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Abstract 

Due to the increasing demand for traveling in public transportation systems and increasing traffic of 

vehicles, nowadays vehicles are getting to be intelligent to increase safety, reduce the probability of 

accident and also financial costs. Therefore, today, most vehicles are equipped with multiple safety control 

and vehicle navigation systems. In the process of developing such systems, simulation has become a cost-

effective chance for the fast evolution of computational modeling techniques. The most popular 

microscopic traffic flow model is car following models which are increasingly being used by transportation 

experts to evaluate new Intelligent Transportation System (ITS) applications. The control of car following 

is essential to its safety and its operational efficiency. This paper presents a car-following control system 

that was developed using a fuzzy model predictive control (FMPC). This system was used to simulate and 

predict the future behavior of a Driver-Vehicle-Unit (DVU) and was developed based on a new idea to 

calculate and estimate the instantaneous reaction of a DVU. At the end, for experimental evaluation, the 

FMPC system was used along with a human driver in a driving simulator. The results showed that the 

FMPC has better performance in keeping the safe distance in comparison with real data of human drivers 

behaviors. The proposed model can be recruited in driver assistant devices, safe distance keeping observers, 

collision prevention systems and other ITS applications. 

Keywords: Intelligent transportation systems, car following maneuver, modeling and control, fuzzy system, model 

predictive system. 

 

1. Introduction 

Despite wide planning in the route management, 

adequate infrastructure and traffic rules for safe 

driving, still developed countries are faced with the 

problem of traffic congestion and therefore a waste of 

time, fuel and financial resources due to increased 

travel demands. A solution could be to create new 

roads, but this solution with respect to environmental 

and political reasons are less capable of being 

implemented. For this reason, a good alternative, as a 

basic infrastructure is needed. 

Intelligent transportation Systems (ITS) are being 

developed and deployed to improve the efficiency, 

productivity, and safety of existing transportation 

facilities and to alleviate the impact of transportation 

on the environment. These systems exploit currently 

available and emerging computer, communication, 

and vehicle-sensing technologies to monitor, manage, 

and control the highway transportation system. The 

success of ITS deployment depends on the 

availability of advanced traffic analysis tools to 

predict network conditions and to analyze network 

performance in the planning and operational stages. 

Many ITS sub-systems are heavily dependent on the 

availability of timely and accurate wide-area 

estimates of prevailing and emerging traffic 

conditions. Therefore, there is a strong need for a 

Traffic Estimation and Prediction System (TrEPS) to 

meet the information requirements of these 

subsystems and to aid in the evaluation of ITS traffic 

management and information strategies [1]. 

Intelligent vehicles are the future generation 

vehicle that has the ability to achieve the most 

efficient performance of a DVU. An intelligent 

vehicle system senses the vehicle environment to 

reach the efficient operation of a vehicle. That is to 

assist the driver by an advice or warning, or fully 

control the vehicle as in autonomous vehicles. 

Intelligent vehicles will perform longitudinal and 
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lateral movement of the vehicle with increasing its 

safety, performance efficiency and driving comfort 

and all these performances are done by their 

integrated sub control system. These actions, when 

combined with autonomous controlling, can reduce 

the reaction time of the DVU and also to help achieve 

the minimum safe distance between vehicles; and thus 

lead to an improved traffic performance. 

Microscopic models are increasingly being used 

by transportation experts to evaluate the applications 

of new ITS [2]. A variety of applications including 

vehicle navigation systems, adaptive cruise control 

systems, lanes keeping assistance systems and 

collision prevention systems directly use the 

microscopic traffic flow models [3 and 4]. Car 

following models are among the most popular 

microscopic traffic flow modeling approaches aiming 

to describe the process of following a leader vehicle 

by a vehicle. As shown in Fig.1, car following 

describes the longitudinal action of a driver when he 

follows another vehicle and tries to maintain a safe 

distance to the leading car. The majority of available 

car-following models assume that the driver of the 

follower vehicle (FV) responds to a set of variables 

like relative velocity and relative distance between the 

leader vehicle (LV) and the FV, velocity of the FV, 

and/or desired distance and/or velocity of the target 

driver. The response is typically considered to be as 

acceleration or velocity changes of the following 

vehicle [1]. 

Highly nonlinear nature of car following behavior 

necessitates the development of intelligent algorithms 

to describe, model and predict this phenomenon. 

Fuzzy logic can be a potential method dealing with 

structural and parametric uncertainties in the car 

following behavior. Model predictive control system 

by using proper information from the car following 

behavior can predict the future behavior of the DVU 

[5]. With fuzzy inference systems (FIS), it cans 

simultaneously using the advantages of both methods. 

Integration of human expert knowledge expressed by 

linguistic variables, and learning based on the data are 

powerful tools enabling FIS to deal with uncertainties 

and inaccuracies [6]. 

Humans play an essential role in the operation and 

control of human-machine systems such as driving a 

car. With advances in emerging vehicle-based ITS 

technologies, it becomes even more important to 

understand the normative behavior response of 

drivers and changes under new systems [7]. Based on 

Rasmussen’s human-machine model, driver behavior 

can also be separated into a hierarchical structure with 

three levels: the strategic, tactical, and operational 

level [8]. At the highest or strategic level, goals of 

each driver are determined, and a route is planned 

based on these goals. The lowest operational level 

reflects the real actions of drivers, e.g., steering, 

pressing pedal, and gearing. In the middle tactical 

level, certain maneuvers are selected to achieve short-

term objectives, e.g., interactions with other road 

users and road infrastructures. The behavior at this 

level is dominated by the most recent situations but is 

also influenced by driver’s goals at the higher level. 

To develop microscopic traffic simulation of high 

fidelity, researchers are often interested in imitating 

human’s real driving behavior at a tactical level. That 

is, without describing the detailed driver actions, 

DVUs in the simulation are modeled to replicate their 

states in reality, i.e., the profiles of vehicle position, 

velocity, acceleration, and steering angle.  

Car following behavior, which describes how a 

pair of vehicles interacts with each other, is an 

important consideration in traffic simulation models. 

A number of factors have been found to influence car-

following behavior, and these include individual 

differences of age, gender, and risk-taking behavior 

[3]. Regarding literatures, car-following models can 

be classified into 14 groups [9]. 

In a general classification, car following behavior 

microscopic models can be divided into 2 groups: 

mathematical equation-based and input-output based. 

The most important point in mathematical models is 

calculation and obtaining model parameters. 

Therefore, these parameters can be always obtained 

by average of values or regarding them as a fix value 

of DVU. Because these parameters are as a function 

of time, results of these models are proper for test 

cases and are not reliable. In input-output models, by 

considering the fixed DVU reaction time, output 

values are applied to input. Since the DVU reaction 

time is not actually fixed, other parameters vary with 

time. So an error in modeling is appeared because of 

the difference between real data and data used for 

modeling [10]. 

In this paper, a FMPC system is presented to 

predict the car following behavior in real traffic flow 

considering the effects of driver’s behaviors. The 

instantaneous reaction delay of DVU is used as a 

human effect and applied as an input of the car-

following model. Then the presented control system 

is evaluated with simulation on the car following 

simulator. This paper is organized as follows: In 

Section 2.1, a brief review on model predictive 

control (MPC) is presented and at enjambment, at 

Section 2.2 the ANFIS car following behavior model 

which will be used in the design of the controller is 

explained. In Section 2.3, the FMPC based on the 

instantaneous reaction delay as an input is proposed 

to predict the DVU behavior in car following 

scenarios and to maintain the safe distance with the
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 LV. In Section 3, the proposed FMPC model is 

linked with a driving simulator and the results of 

simulation are presented. Finally, conclusion is 

presented in Section 4. 

2. Designing Fuzzy Model Predictive Control 

System for Car-Following Behavior 

In this section the design process of our FMPC is 

explained. But before that, a brief review on MPC, 

the advantages of this method and the theory of 

calculation of the instantaneous reaction delay of a 

DVU is presented. 

2.1 Model Predictive Control Basics 

Model predictive control is a form of control in 

which the current control action is obtained by 

solving, at each sampling instant, a finite horizon 

open-loop optimal control problem, using the current 

state of the plant as the initial state; the optimization 

yields an optimal control sequence and the first 

control in this sequence is applied to the plant. An 

important advantage of this type of control is its 

ability to cope with hard constraints on controls and 

states [11]. 

MPC is probably the most applied advanced 

control technique in the industry due to several 

reasons: 

It handles multivariable control problems 

naturally. 

It can take account of actuator limitation. 

It can handle constraints on the inputs and the 

outputs of the process in a systematic way during the 

design and the implementation of the controller. 

It can handle changes in system parameters or 

system structure (including sensor or actuator 

failures) by regularly updating the parameters and the 

structure of the prediction model [12]. 

However, the use of MPC is not limited to the 

industry. The many advantages that MPC offers are 

also relevant for traffic control. In fact, MPC has 

already been extended to conventional roadside-based 

non-IV traffic management, traffic management and 

intelligent vehicles control [13, 14 and 15]. It has also 

been used as driver assistant for ecological driving 

[16], path tracking of autonomous vehicle [17] and 

safe distance control in car following behavior [5]. 

The general design objective of model predictive 

control is to compute a trajectory of a future 

manipulated variable u to optimize the future 

behavior of the plant output y. The optimization is 

performed within a limited time window by giving 

plant information at the start of the time window [18]. 

Fig. 2 shows a schematic representation of MPC [13]. 

 
 

Fig1. Car-following behavior (LV and FV) [2]. 

 

Fig2. Schematic representation of MPC [13].
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In the next section, a new input-output model will 

be presented which estimates the FV’s acceleration. 

Using this model, the DVU’s instantaneous reaction 

time is calculated as an input for the system and then 

other inputs and outputs are chosen according to this 

reaction delay. The DVU’s reaction delays are not the 

same in subsequent moments, so inputs and outputs 

must be chosen properly as a function of the correct 

reaction delay. 

2.2 ANFIS Car Following Behavior Model 

Considering the Human Effects 

Artificial Neural Network (ANN) is a proper 

method to solve the complex and ill-defined 

problems. This method has the following advantages: 

they can learn from examples, are fault tolerant in the 

sense that they are able to handle noisy and 

incomplete data, are able to deal with nonlinear 

problems, and once trained they can perform 

predictions and generalizations at high speed. They 

are particularly useful in system modeling, such as in 

implementing complex mapping and system 

identification [7]. 

ANN models may be used as alternative methods 

in engineering analyses and predictions. These 

models mimic the learning process of a human brain. 

They operate like a black box model, and require no 

detailed information about the system. Instead, they 

learn the relationship between the input parameters 

and the controlled and uncontrolled variables by 

studying the previously recorded data, in a way 

similar to how a nonlinear regression might be 

performed [7]. 

Another advantage of using ANNs is their ability 

to handle large and complex systems with many 

interrelated parameters. They seem to simply ignore 

excess data that are of minimal significance, and 

instead, concentrate on the more important inputs [7]. 

Fuzzy logic can be a potential method dealing 

with structural and parametric uncertainties in the car 

following behavior. Integration of human expert 

knowledge expressed by linguistic variables is a 

powerful tool enabling fuzzy models to deal with 

uncertainties and inaccuracies [19]. Additionally, 

artificial neural networks can be favorable tools 

providing the possibility of exploiting real observed 

data while developing the models. Neuro-fuzzy 

models, such as ANFIS, are combinations of artificial 

neural networks and fuzzy inference systems, 

simultaneously using the advantages of both methods 

[20]. 

In [10], a new input-output model based on 

ANFIS was presented which estimates the FV’s 

acceleration. The most important point in that model 

is that DVU’s instantaneous reaction time is used as 

an input for the model. This variable is calculated 

considering the proposed idea. Proper outputs are 

chosen according to the DVU’s reaction delay based 

on Stimulus-Reaction idea. This means that the 

accurate and appropriate output, for each step of 

inputs, must be chosen from further step in the real 

dataset (which will be explained in Section 3). The 

difference between the occurrence time of inputs and 

output in the real data is equal to the DVU’s reaction 

delay. This delay is not the same in subsequent 

moments, and hence, the input and output must be 

chosen as a function of the proper and correct reaction 

times. In fact, the stimulus and reaction should be 

considered as an input and output with respect to the 

accurate instantaneous reaction time. Therefore, the 

idea in which the DVU’s reaction time was 

considered as a constant value can be modified by 

introducing this new idea. 

To design the FIS model shown in Fig. 3, it is 

assumed that the ANFIS model for the prediction has 

four inputs and one output. The four inputs are the 

estimated instantaneous reaction delay ( ) , the relative 

speed ( )V , the relative distance ( )X , and the 

velocity of FV ( )FVv . The output is the acceleration of 

FV ( )FVa . The training of the ANFIS model was 

performed based on choosing suitable inputs and 

output with respect to the instantaneous reaction 

delay. There was one hidden layer with nine nods, 

and back-propagation algorithm was used to train this 

model. Back-propagation is a general purpose 

network paradigm, and calculates the errors between 

the desired and actual output and also propagates the 

error back to each node in the network. The back-

propagated error drives the learning at each node [20].

 
 

Fig3. Designed ANFIS model for car-following behavior. 
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In this paper, similar structure and approach 

(similar to ANFIS) is used, but with addition to 

MPC’s advantages. So a modified FMPC has been 

designed for car following behavior to predict the 

behavior of the LV and to maintain safe distance with 

it. This issue is discussed in the next chapter. 

2.2 Designing of the FMPC system 

An accurate representation of car following 

behavior should take into account the nonlinearity of 

human response and limitations of a human 

perception system, i.e. drivers may not be able to 

perceive relative speed and headway accurately, and 

the decision process (acceleration control) could be 

highly nonlinear. The FMPC can map between 

variables that the driver can perceive and those that 

the driver can directly control. This mapping can be 

done with arbitrary accuracy based on fuzzy 

reasoning and MPC algorithm. This makes the system 

perform naturally and appropriate to model a human 

in the system loop [21]. 

To design FMPC, the main problem was defining 

the proper inputs and outputs and membership 

function. The optimal membership function values are 

usually found by trial and error which is laborious. 

But, in this paper, prior works experience in this filed 

[10, 22 and 23] were used to find the proper inputs 

and outputs. The controller works in such a way that 

the acceleration is predicted as an output variable for 

future moments. That is completed by considering the 

effects of the driver behavior and calculating 

instantaneous delay of the DVU. In the designing 

process of this controller which is based on fuzzy, 

four inputs has been selected. They are; the 

acceleration of the leader vehicle ( LVa
), driver’s 

instantaneous delay ( ), the relative distance between 

the two vehicles ( x ) and the safe distance between 

the two vehicles (S). These inputs are applied to the 

controller which makes it comparable with the 

reference input of the controller. The safe distance 

between the two vehicles ( S ) is applied to the 

controller as the reference input to keep the safe 

distance. This safe distance is calculated by Pipe’s 

rule [24]: 

 

Note that this distance is a function of the follower 

vehicle’s velocity ( FVV ) which is calculated in each 

time step by integration of the acceleration of FV ( FVa ). 

In fact the controller receives a new value as a 

reference at each time step that has no information 

about it. Hence the controller must predict it in a way 

to keep the safe distance between the two vehicles. 

Fig. 4 shows the FMPC controller structure. 

For each input, 3 Gaussian membership functions 

are defined and in the first phase the rules are fully 

defined. For this controller, 81 fuzzy Sugeno rules are 

used. Then these rules are modified and optimized 

and reduced to 53 fuzzy Sugeno rules. 

3. Discussion and results  

When talking about driving behaviors, 

uncertainty, inaccuracies and involvement of human 

reasoning and logic are involved. These are part of 

the driving nonlinear nature, traffic flow and related 

phenomena and existence of DVU time delay. So 

these parameters create a lot of complexity in the 

control commands and problem solving. Therefore 

simultaneous use of methods that have the ability to 

deal with inaccuracy and uncertainty are beneficent 

solutions. This solution must have the ability to model 

nonlinear systems and the ability to express 

mathematical arguments and human decision. Also it 

must have a high potential to be used in simulation, 

modeling and traffic control. These methods must be 

able to perform online calculation and prediction 

optimization at estimating and applying the 

commands. So it could calculate and predict driver 

behavior and DVU time delay. 

 

 
Fig4. . Designed FMPC controller for car-following behavior. 

The FMPC, given the instantaneous delay of the 

DVU and driver behavior at the moment, will predict 

the driver behavior in the future. The FMPC will 

apply the control inputs for predicted behavior and 

navigation of the vehicle at each moment. These 

inputs are chosen with the aim for adjusting the 

(1 )
4.47

FVV
S L 

 

(1) 
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velocity and safe region for vehicle and also 

regulating and improving vehicles platoon. Fig. 5 

shows the schematic of the closed-loop control 

system and dynamic behavior of the pair of vehicles 

with main components of the loop. 

In the next step, car-following simulation 

experiment of the suggested control system was 

implemented on the K.N.T.U driving simulator 

(ASARAN). The vehicle model used in this simulator 

has been validated by real automobile model. By 

receiving dynamic inputs from virtual environment, 

this simulator applies the outputs as slope, roll and 

height to the driver and passengers in order to induce 

the feeling of being in real vehicle. Fig. 6 shows the 

general form of the driving simulator (ASARAN). 

Next, the performance of the designed FMPC 

system for car following behavior control is 

evaluated. For this issue, a scenario for LV, regarding 

the actual behavior of the DVU in the real traffic flow 

has been designed. Until the driver in the simulator 

follow the scenario and perform a car following 

behavior. 

To design a car following scenario, a dataset of 

car following behavior was needed. Therefore, real 

car following data from the US Federal Highway 

Administration’s NGSIM dataset have been used 

[25]. In June 2005, a dataset of trajectory data of 

vehicles travelling during the morning peak period on 

a segment of Interstate 101 highway in Emeryville 

(San Francisco), California, was made using eight 

cameras on top of the 154-m-tall 10 Universal City 

Plaza, next to the Hollywood Freeway US-101. On a 

road section of 640 m, as shown in Fig. 7, 6101 

vehicle trajectories were recorded in three 

consecutive 15-min intervals. 

This dataset has been published as the “US-101 

Dataset.” The dataset consists of detailed vehicle 

trajectory data on a merge section of eastbound US-

101. The data were collected in 0.1-sec intervals. Any 

measured sample in this dataset has 18 features of 

each DVU in any sample time, such as longitudinal 

and lateral position, velocity, acceleration, time, 

number of road, vehicle class, front vehicle, etc. 

 

 

 
Fig5. Schematic of the ANFIS control system closed-loop 

 
 

Fig6. General form of the K.N.T.U driving simulator 
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Fig7. A segment of Interstate 101 highway in Emeryville, San Francisco, California [25]. 

 

 

 
Fig8. Comparison of unfiltered and filtered data; (a) relative velocity, (b) acceleration. 

However, the trajectory data appeared unfiltered 

and exhibited some noise artifacts; hence, they were 

filtered as done earlier in [26 and 27]. A moving 

average filter was designed and applied for duration 

of about 1 sec to all trajectories before any further 

data analysis. An example of the comparison of 

unfiltered and filtered data is shown in Fig. 8. 

The necessary data for designing LV scenario was 

extracted from the NGSIM dataset. Then by repeating 

and adjusting these data, a scenario for the LV 

movement has been created. In this scenario, a 

specified behavior from LV is repeated 5 times. The 

reason of performing this repeated behavior is to 

evaluate and analyze the different reaction of the FV 

towards that specific behavior of the LV. Fig. 3 shows 

the variations of the leader vehicle’s velocity. 

As it can be seen from the Fig. 9, the scenario has 

5 repeated behaviors. All behaviors are same and each 
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one start when velocity is at 5(m/s) and ends at 

27(m/s). In the simulator, navigation of the FV is 

done by human driver and he/she tries to follow the 

LV and keep the safe distance with it. To evaluate the 

performance of the controller, the simulation has been 

done for two cases. In the first case, the controller has 

been turned on from the second repetitive behavior. In 

this case, the output from human driver behavior and 

controller system doesn’t influence on each other. 

This means that the FMPC system is working off-line 

and its control inputs don’t interfere with that of the 

human driver.  Therefore, the human driver’s 

behavior with the one of the FMPC system can be 

compared side by side (well). In the second case, the 

controller has been turned on from the fourth 

repetitive behavior. That means the FV will be 

navigated by the FMPC system. And as the result, the 

FMPC system will keep the FV in the safe condition 

by maintain safe distance with the LV. 

The sample time for car following behavior 

simulation has been selected as 0.1 second and for the 

prediction horizon (    and the control horizon (   , 

20 sec and 4 sec were selected respectively.  

Car following behavior in general is a calm and 

steady process. A large part of this uniformity is due 

to the vehicle’s limitation such as increase and 

decrease limitation of velocity and braking. Therefore 

in the design of the FMPC, constrains has been 

applied on the acceleration by fuzzy definition. These 

constraints will get the behavior of the model closer 

to reality. Also by adjusting them, smoother vehicle 

motion can be delivered and hence enjoyable trip 

provided. 

Fig. 10 shows the relative distance between the 

follower and the LV as the result of the first case 

simulation. For better illustration of the result, each 

two repetitive behavior has been separated and then 

plotted in different diagrams. 

As it can be seen from the Fig. 10, the FMPC 

system has been turned on from the second repetitive 

behavior and the results of the first case simulation 

shows that the human driver followed the LV and 

traversed each repetitive behavior differently. On the 

other hand, the FMPC system navigated each 

repetitive behavior according to the safe distance 

definition and alike the real scenario. This result 

shows that the human driving judgment for 

maintaining safe distance is dependent on the 

personal characteristics much more than the behavior 

of the LV. Also, it can be seen that the FMPC system 

maintains the safe distance by the rules and the safe 

distance definitions and its performance doesn’t get 

influenced by the driver’s personal characteristics. 

Thus it will navigate each repetitive behavior by 

maintaining the safe distance definition.   

Fig. 15 shows the simulation result of the second 

case scenario. In this case, The FV has been navigated 

by human driver from the beginning to the third 

repetitive behavior. After that, the FMPC has been 

turned one, and the FV has been navigated by the 

controller. The result shows the relative distance and 

the relative distance dynamic error regarding the 

pipe’s rule for keeping the safe distance with the LV. 

 
 

 

 
Fig9. .  Leader vehicle movement scenario 
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(a) 
 

      (b)

 

 

 (c)                           (d) 
 
 

Fig10. Result of the first case simulation: (a) 1-2 repetitive behavior, (b) 2-3 repetitive behavior, (c) 3-4 repetitive behavior, (d) 4-5 

repetitive behavior 

 

(a)                           (b) 

Fig11. performance of the FMPC system for car following behavior in comparison to the human driver, (a) relative distance between LV 

and FV, (b) relative distance error based on pipe rule 

 

As it can be seen in the above, from the beginning 

of this experiment, the human driver have been 

followed the LV for three repetitive behavior, and 

none of them are alike. This means the human driver 

behaves differently even if the condition that he/she is 

encountered is repeated three times. As the result 

shows, the human driver has high error in keeping the 

safe distance. After that, when the FMPC system has 

been turned one, the FV has been navigated by the 

controller. It can be seen from the above result, that 

the controller navigated all the remaining behaviors 

alike each other. Also the error of the FMPC system 

for keeping the safe distance is very low and around 

zero. This means that the FMPC system was able to 

maintain the safe distance and keep the FV in the safe 

region for car following behavior.
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4. Conclusion 

In this paper, a control system based on fuzzy 

predictive system for car following behavior has been 

presented. In the design of this control system, an 

innovation idea for calculating DVU’s instantaneous 

reaction delay has been used. Then, other proper 

inputs and membership functions have been defined 

with respect to the instantaneous reaction delay. This 

control system, based on input information, predict 

the LV driver behavior. The control command 

(acceleration) which is compatible with the safe 

distance reference will be applied. Since the control 

system is associated with human behaviors, the 

presented FMPC system has been simulated with a 

driver in the loop. K.N.T.U driving simulator 

(ASARAN) has been used for the car following 

simulation. Also the behavior of the LV for simulator 

has been extracted from real car following dataset. 

This data is modified to consist five repetitive alike 

behavior. For evaluation of the FMPC system, two 

case scenarios for simulation have been designed. The 

results of the two case scenarios show that the 

behavior of the human driver at following the LV in 

each similar (repetitive) behavior is not like each 

other. That means, the human driving judgment for 

following the LV and maintaining the safe distance is 

dependent on the personal characteristics much more 

than the behavior of the LV. Also, the human error in 

keeping the safe distance is high. On the other hand, 

the FMPC system has followed the LV observing the 

safe distance definition. The result is that, each 

repetitive behavior that is navigated by FMPC is 

alike. Also the control system error in keeping the 

safe distance is around zero. That means that the 

FMPC system doesn’t get influenced by human driver 

personal characteristics. The FMPC system can 

perform car following behavior maneuver by keeping 

the FV in safe condition. The presented control 

system can be used in driver assistant devices, safe 

distance keeping observers, collision prevention 

systems and other ITS applications. Also this control 

system can be used to improve the current control 

systems performance and also for evaluation of the 

driver behavior at maintaining the safe distance.  
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