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Abstract 

Induction motors are the most commonly used in the traction industries and electric vehicles, due to their 

low primary cost, low maintenance costs, and good performance. Speed identification is needed for the 

induction motor drives. However, using of speed sensors in the induction motor drives is associated with 

problems such as, extra cost, reduced reliability, added mounting space, etc.. Therefore, many of the recent 

researches had been dedicated to sensor less induction motor drives. In the induction motor, the rotor speed 

is estimated using measured stator voltages and currents of the induction motor, as the sensor less drive. 

The rotor speed for sensor less induction motor drives can be estimated by various techniques, which is 

designed with respect to required accuracy and sensitivity against induction motor parameter variation. In 

this paper, comprehensive review of different induction motor speed estimation techniques for traction 

applications, their special features and advantages is presented. 

Keywords: Sensor less, induction motor drives, speed estimation 

1. Introduction 

In the past, dcmotorswere preferred as the high-

performance electrical motor drive in traction 

applications and other industries. However, the 

inherent drawbacks of dc motorshave caused 

continual attempts to find out an alternative for dc 

motors,e.g.,heavy weight, large size,and frequent 

maintenance requirements. Induction motors have 

many merits like reliability, low cost, low 

maintenance and simplicity[1-3].Precise speed and 

torque control of an induction motor was 

impossibledue to the serious nonlinear behavior and 

time varying nature of an induction motor drive. 

However, advances in solid-state power-electronic 

switching devices, electronic processing, and control 

designmade them a proper choice for high-

performance drive applications[4, 5].Nowadays, 

induction motors are the most applicable in the 

traction and vehicular technologies, which usually is 

controlled with power-electronic switching devices in 

electric cars/trains [6].Modern control methods foran 

induction motor drive can be divided intothe two 

major classes: field oriented control (FOC) and direct 

torque control (DTC). Moreover, there are two 

variants of FOC: direct field oriented control (DFOC) 

and indirect field oriented control (IFOC).Usually, 

IFOC is preferred to DFOC, because the natural 

robustness of an induction motor drive isreduced by 

flux sensors used in DFOC[7-10]. There are several 

types for DTC implementation includes: switching 

table based, direct self-control, space vector 

modulation, and constant switching frequency. The 

features of DTC comparedto standard FOC can be 

classified as follows[11-13]: 

Estimation of the stator flux vector and torque is 

required 

Coordinate transformation is not required 

Separate voltage PWM is not used 

There is not any current control loop 

Accurate speed information is necessary foran 

induction motor drive with modern control 

techniques.Speed identification can be performed by a 

physical sensor; however, speed estimation is more 

commonly used. The most important advantages of 

sensorless induction motor drive include[14-18]: 

Transducer cost avoided  

Reduced electrical noise 

Increased reliability and robustness 

Fewer maintenance requirements 
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Suitable for hostile environments, including 

temperature 

Recently, sensor less induction motor drives has 

received intensive attention from the researchers and 

designers. Basic divisions of induction motor speed 

estimation techniques are shown in Fig. 1, 

whicharegenerallyclassifiedunder two categories, as 

discussed in[11-17]: (i) signal injection based 

methods and (ii) fundamental model based methods. 

The signal injection based methods, suffer from large 

computation time, complexity and limited bandwidth 

control[19, 20]. They are usedat very low speeds, 

especially at zero speeds as investigated in [14, 21, 

22].The fundamental model based methods are more 

common because of their simplicity, and associated 

problems with the motor anisotropies based method 

like large computation time, complexity and limited 

bandwidth control[12, 13]. The fundamental model 

based methods can be classified as open loop speed 

calculators, Adaptive Flux Observers (AFO), Sliding 

Mode Observers (SMO), Extended Kalman Filters 

(EKF),Model Reference Adaptive Systems (MRAS) 

and Artificial Intelligence (AI) Techniques. In this 

paper, a review of different speed estimation 

techniques of senseless induction motor drives is 

presented. In addition, the problems of a sensor less 

induction motor drive are introduced. 

2. Fundamental model based speed 

estimation methods 

In this part, structures of the fundamental model 

based speed estimation methods are presented. They 

can be summarized as follows: 

2.1Open loop observer 

The rotor fluxes of the induction motor in the 

stationary reference frame can be written as follows: 

r
rd sd s sd s sd

m

Ld d
V R i L i

dt L dt
 

 
   

                     (4)

 

 

r
rq sq s sq s sq

m

Ld d
V R i L i

dt L dt
 

 
   

                   (5)

 

The block diagram of the open loop observer is 

shown in Fig. 2, which is very simple and has low 

computational time. However, it suffers from the 

following problems[12, 16]: 

 

 
Fig1. Speed estimation techniques of induction motor 

 

 

Fig2. Block diagram of open loop observer
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Fig3. Block diagram of the adaptive flux observer 

 

 

Fig4. Block diagram of the sliding mode observer 
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We can put the Eqn. 6 and Eqn. 7 into the 

following component form: 
d

x Ax Bu
dt

 
             (8) 

y Cx               (9) 

Where x is state vector, u is input vector, 
y

is 

output vector. The state vector can be estimated by 

the following equation: 

 d
x Ax Bu G C x y

dt
   

            (10) 
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Where, G is the observer gain. The adaptation 

mechanism is based on Lyapunovtheory and the rotor 

speed is estimated as follows:  

   I
p

K
Kr sd sqrq rdsd sqi i i i

S
      

   
              (12) 

The accuracy of speed estimation depends on the 

assignment of the observer gain G and PI gains. 

Design of the observer gain G and PI gains is 

performed based on pole placement approach. In 

order to get stability at all speeds, the observer poles 

should be proportional to the motor poles. The 

accuracy of this method is affected by parameter 

variations, especially at low speeds, because the 

observer gain G depends on induction motor 

parameters[12, 25]. Therefore, the robust control is 
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hired to design the observer gain Get improve the Luenberger observer performance[26, 27]. 

2.3Sliding mode observer 

The block diagram of the sliding mode observer 

for speed estimation of induction motor is shown in 

Fig. 4. The structure of this method is similar to 

Luenberger observer method[28]and consists of three 

main parts: an induction motor model, feedback gain 

and an adaptation mechanism. The induction motor is 

modeled by Eqn.7 and Eqn. 8. The state vector is 

estimated by the following equations[29]: 

 

 

1

1

ˆ ˆˆ ˆ sgn

,

s s

T

d
x Ax Bu K i i

d

k IK I

t
   

 

         (13) 

Where 1K
is a gain matrix and k  is the switching 

gain. Based on Lyapunov theory, the rotor speed can 

be estimated as follows: 

   ˆ ˆˆ ˆ ˆsgn sgnr s s r s s rk i i i i dt            
                

(14) 

Using of the sliding mode control in the senseless 

induction motor drive for speed estimation provides 

many suitable features, such as good performance 

against unpredicted dynamics, insensitivity to 

parameter variations, external disturbance rejection 

and fast dynamic response. However chattering 

problem elimination is required for induction motor 

speed estimator based on sliding mode observer [30-

32].  

2.4 Extended Kalman Filter 

An Extended Kalman Filter (EKF)is a recursive 

optimum observer, which can beused for the state and 

parameter estimation of a nonlinear dynamic 

system[33].The EKF is suitable for the speed 

estimation of an induction motor.The block diagram 

of the EKF is shown in Fig. 5. The main design steps 

of the EKF algorithm for induction motor rotor speed 

estimation are as follows [13, 33, 34]: 

Discretization of the induction machine model 

Determination of the noise and state covariance 

matrixes 

Implementation of the EKF algorithm 

The compact form of the induction motor state space 

equations is given as follows: 

( )
( ) ( ) ( )

( ) ( ) ( )

dx t
Ax t Bu t v t

dt

y t Cx t w t

  

           (15)

 

Where 
( )

T
s s s s

ds qs dr qr rx t i i       is the 

state vector, 
( )

T
s s

ds qsu t V V     is the input vector, 

( )
T

s s

ds qsy t i i    is the output vector. 
( )v t

and
( )w t

are the input noise and output noise respectively. The 

discrete time form of equation (15) is given below: 
 

     
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d d

d
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 
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After initializing covariance matrices Q, R, P (the 

system noise matrix, measurement noise matrix, and 

system state matrix respectively), the state vector 

 x k
 is estimated. The estimation of the state vector 

 x k
 consists of six steps: 

Prediction of the state vector 
 

 
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Fig5. block diagram of the EKF 
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The notation 1kk
x

  means that it is a predicted 

value at the (k+1)-the instant and it is based on 

measurements up to k-the instant, F is 

Jacobianmatrices. 

Prediction of the covariance matrix P 

1

k k

T

k kk k

x x

P MP M Q

F
M

x





 





   

(18)

 

EKF Gain Computation 
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 
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
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State Vector Estimation 

 1k k k k kk k
x x L y y  

   (21) 

where 

1k d kk
y C x 

    (22) 

Estimation of the covariance matrix P 

1

1 1

k k

k k k kk k k

x x

h
P P L P

x


 




 


 (23) 

After all steps executed, set k=k+1 and start from 

the step 1. The EKF is straightforward and simple; 

however it suffers from bellow drawbacks [35, 36]: 

Instability due to linearization and erroneous 

parameters 

Biasedness of its estimates 

Costly calculation of Jacobian matrices 

Lack of analytical methods for model covariance 

selection. 

2.5Model Reference Adaptive System 

Model reference adaptive system (MRAS) based 

methods are one of the best techniques to estimate 

rotor speed of induction motor due to their design 

simplicity and fewer computation requirement 

compared with other closed-loop model-based 

methods.Asshown in Fig. 6, the basic structure of the 

MRAS speed estimator consists of a reference model, 

adjustable model and an adaptation mechanism. 

Variable x  is calculated in the reference model by 

using measured stator currents and stator voltages. 

The variable x  is estimated in the adjustable model. 

The adaptive mechanism uses the error ( e ) between 

the calculated variable x and the estimated variable 

x to generate the estimated speed ( r ) for the 

adjustable model. The adaptive mechanism is derived 

by using Popov’s criterion of hyper stability[37]. 

MRAS based speed estimators developed so far can 

be divided among four groups: 

 

 

 

 

 

 

 
 

Fig6. General structure of MRAS 
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Fig7. Structure of rotor flux based MRAS 

 

 

Fig8. structure of back-emf based MRAS 

 

2.5.1 Rotor Flux based MRAS 

The rotor flux based MRAS is introduced by 

Schauder in[37].The structure of this method is 

shown in Fig. 7.In the rotor flux based MRAS, the 

rotor flux vector rΨ is calculated in the reference 

model(Eqn. 25 and Eqn. 26).In the adjustable model, 

the rotor flux vector is estimated (Eqn.27 and Eqn. 

28). The error vector ( e ) is made by the difference 

between calculated rotor flux vector and estimated 

rotor fluxvector.The error vector is multiplied to 

calculated rotor fluxvectorto make speed tuning 

signal ( ), which is then fed to a PI-type controller, 

which in turn, outputs the estimated rotor speed 

(Eqn.31). 
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In this method, the stator resistance is appeared in 

the reference model. The stator resistance varies with 

temperature, and this affects the stability performance 

of the speed observer, especially at low speeds. 

Furthermore, the presence of pure integrators in the 

reference model leads drift and initial condition 

problems. To avoid these problems, low-pass filters 

are used instead of pure integrators; however, they 

cause serious problems at low speeds and introduce a 

time-delay[38, 39]. 

2.5.2Back-EMF based MRAS

 r
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In the back-emf based MRAS,the back-emf vector 

is produced with the reference model and adjustable 

model instead of the rotor flux vector[40].Fig. 

8illustrates structure of the back-emf based MRAS 

speed estimator. The back-emf vector can be 

calculated by Eqn.32 and Eqn. 33(as the reference 

model) or can be estimated byEqn. 34andEqn. 35(as 

adjustable model).The adaptation mechanism of this 

method is similar to that of the flux rotor based 

MRAS. The rotor speed can be estimated by Eqn. 37. 

The back-emf based MRASis dependent upon the 

variation of stator resistance due to the presence of 

stator resistance in the reference model. Therefore, 

accurate sensing of the back-emf is impossible, 

especially at low speeds. In addition, the presence of 

derivative operator in the reference model reduces the 

signal-to-noise ratio considerably at low speeds[12, 

13, 41]. 

 

2.5.3Reactive power based MRAS 

This scheme can be represented intwo different 

ways,the air-gap reactive power based MRAS and 

themachine terminal reactive power based 

MRAS.Fig.9shows the block diagram of speed 

estimation using air-gap reactive power based MRAS. 

In the air-gap reactive power based MRAS, the 

magnitude of air-gap reactive poweris produced with 

the reference model and adjustable model. The air-

gap reactive powercan be calculated by Eqn.38 or can 

be estimated by eqn. 39, so Eqn. 40and Eqn. 41 are 

considered as the reference model and the adjustable 

model, respectively.The rotor speed can be estimated 

by Eqn. 42, where a PI controller is utilized as the 

adaptation mechanism[15, 42]. 

The air-gap reactive power based MRAS is 

completely robust to the stator resistance. However, 

the reference model is dependent on leakage 

inductances. In addition, the presence of derivative 

operator in the reference model reduces the signal to 

noise ratio, considerably at low speeds[43]. 

 

 

 

 
 

Fig9. structure of air-gap reactive power based MRAS 
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Fig10. structure of machine terminal reactive power based MRAS 

 

Fig11. structure of stator current based MRAS 

 

Fig12. ANN rotor flux based MRAS 

To eliminate problems of the air-gap reactive 

power based MRAS, the reactive power is computed 

at the machine terminal, instead of the air-gap[44]. 

The structure of the machine terminal reactive power 

based MRAS is shown in Fig. 10, which Eqn. 43 is 

utilized in the reference model and Eqn. 44, is utilized 

in the adjustable model. In the reference model, the 

measured stator currents are used to calculate the 

machine terminal reactive power whereasinthe 

adjustable model, estimated stator currents are used to 

estimate the machine terminal reactive power. The 

machine state space equations are utilized to estimate 

the stator currents[16](Eqn. 45).The adaptation 

mechanism consists of a PI controller where uses 

difference between calculated and estimated machine 

terminal reactive power as input. Therefore, estimated 

speed can be presented by Eqn. 46. 
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2.5.4 Stator Current based MRAS 

Fig. 11shows a block diagram of the stator current 

based MRAS method, in which, the measured stator 

currents of the induction motor are used as the 

reference model, whereas the estimated stator currents 

of the induction motor are considered as the 

adjustable model[45].To estimate the stator currents, 

the information on the rotor fluxesis required. The 

rotor fluxesare calculated by using measured stator 

currents (Eqn. 47). The stator currents are estimated 

by Eqn. 48. Finally, rotor speed is estimated by Eqn. 

49[46]. 
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     (48) 

Performance of the stator current based MRAS 

and the machine terminal reactive power based 

MRAS are better than other MRAS speed estimator 

(especially at low speeds) due to absence of induction 

motor’s parameters and derivative operator in the 

reference model. The main merits of MRAS method 

include[15, 43]: 

Simple structure 

Fast convergence 

Robustness 

Small computation time 

Demerits include: 

Arduousness of the adaptation mechanism design  

Sensitivity to inaccuracy in the reference model  

2.6 Artificial neural network methods 

The artificial intelligence (AI) methods are robust 

to parameter variations, and a nonlinear function can 

be approximated with any desired degree of 

accuracy[47]. The induction motor is inherently a 

nonlinear system and its parameter varies during 

operation. Therefore, it is very difficult to estimate 

the rotor speed with good accuracy for an entire speed 

range and transient states[12].For these reasons, the 

AI methods are used for speed estimation of induction 

motor. The AI method can take various forms for 

speed estimation of induction motor such as artificial 

neural networks (ANN)[48, 49] and fuzzy-neural 

network (FNN)[50, 51]. The AI methods can estimate 

the speed independently or use in adaptation 

mechanism of other methods[52, 53]. For instance, 

the ANN is used instead both the adjustable model, 

and the adaptation mechanism of the rotor flux based 

MRAS method[54], as shown in Fig. 12. In spite of 

good performance of the AI methods, they have high 

complexity and slow convergence.   

 

3. Conclusion 

In this paper, different speed estimation methods 

for using in the sensor less induction motor driveand 

corresponding merits and demerits have been 

presented. There are two main class of speed 

estimator for the induction motor, signal injection 

based method and fundamental model based method. 

The parameter sensitivity in the signal injection based 

methods is low; in addition, they perform well at near 

zero speed. However, they include problems such as, 

large computation time, limited bandwidth control 

and computational complexity. The fundamental 

model based methods are characterized by their 

simplicity and perform well in the high and medium 

speed range. At low speeds, they suffer from 

observability problems. The main sources of 

inaccuracy in the speed estimation at low speeds 

include (i) the parasitic components in the measured 

signals (stator currents and voltages), can affect the 

accuracy of speed estimation by producing substantial 

offsets in estimated flux linkage, (ii) The magnitude 

and phase error in the stator voltages are occurred due 

to nonlinear properties of PWM inverter, and (iii) 

parameter variations, especially stator and rotor 

resistances. To obtain good speed estimation 

accuracy, estimation of the stator and rotor resistances 

is necessary. Among fundamental model based 

methods, SMO has the best behavior. Stator current 

base MRAS and reactive power based MRAS 

perform very well; however, their adaptation 

mechanism design is difficult. Adaptive flux observer 

has good behavior at high and medium speeds; 

however, it has considerable inaccuracy at low 

speeds. As a final comment, when low speed 

operation is required, signal injection methods are 

recommended. In a noisy environment, EKF is the 

best choice since it performs as optimal filtering.  

1
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