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As electric vehicles become more popular, we need to keep improving the 

lithium-ion batteries that power them. Electrochemical impedance 

spectroscopy (EIS) is used based on a discrete random binary sequence 

(DRBS) to reduce excitation time in the low-frequency region and excite 

the input of the battery. In this paper, voltage and current signals are 

processed with wavelet transform for impedance evaluation. In using 

wavelet transform, choosing the most optimal mother wavelet is crucial 

for impedance evaluation since different mother wavelets can produce 

different results. We aim to compare three types of continuous Morse 

mother wavelet, continuous Morlet, and continuous lognormal wavelet, 

which are among the most important mother wavelets, to determine the 

best method for impedance evaluation. We used the dynamic time-

warping algorithm to quantify the difference between the initial values 

obtained from standard laboratory equipment and the impedance 

evaluation through three different continuous wavelets. Our proposed 

method (lognormal wavelet) has the lowest difference (3.4086) from the 

initial values compared to the Morlet (3.5504), and Morse (3.5457) 

methods. As a result, our simulation shows that the lognormal wavelet 

transform is the best method for impedance evaluation compared to Morlet 

and Morse wavelets. 
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1. Introduction  

Lithium-ion batteries are used in stationary, 

automotive, and portable devices due to their 

high energy and power density [1]. Changes 

in the impedance spectrum patterns of a 

battery analyzed through EIS, can provide 

information on the internal health status of 

major battery components (cathode, anode, 

and electrolyte) and the remaining useful life 

of the battery. In a recent paper by Zhang et 

al. [2], extensive testing has shown that EIS 

contains valuable information for detecting 

degradation modes and evaluating the 

remaining useful life of batteries. A small 

perturbation signal is applied to the battery 

input to conduct EIS, and the resulting output 

is measured. Mono-component sinusoidal 

excitation is the conventional method 

employed in EIS measurements [3]-[9]. 

Impedance calculation through EIS 

measurements is restricted to a finite number 

of frequency values. Researchers have found 

that the Nyquist curve provides valuable 

information for accurately determining a 

battery's real capacity, including its state of 

charge and state of health, in the sub-

millihertz region [3], [9]. Therefore, the low-
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frequency region is critical for accurate 

battery measurement, as it can yield 

significant information about the battery's 

behavior. 

When using sinusoidal excitation in EIS, it is 

customary to utilize 3 to 10 periods during the 

measurement process [10]-[12]. At low 

frequencies, the excitation process can 

become extremely time-consuming. For 

example, to obtain an EIS measurement at 

1 𝑚𝐻𝑧  using the recommended 3 to 10 

periods, it would take between 3000 to 10000 

seconds. Due to the extended stimulation 

period, it is difficult to prevent environmental 

drifts and disturbances from impacting the 

measurement's accuracy. In addition, 

achieving acceptable resolution in the 

extremely low-frequency domain (<10mHz) 

demands excessively lengthy measurement 

periods. For efficient EIS analysis of a wide 

frequency range, it is advised to employ 

broadband excitation signals to enable high-

resolution measurements in a short period of 

time [13]-[19]. Research findings indicate 

that EIS was performed at a frequency no 

lower than 100 𝑚𝐻𝑧 , and the excitation 

process lasted approximately 90 seconds 

[13], [15]. 

This paper uses discrete random binary 

sequence excitation to evaluate the EIS of 

lithium-ion batteries. It is possible to 

represent a discrete random binary sequence 

as a sum of numerous sinusoidal signals 

arranged in a sequence of frequencies. Also, 

in this paper, wavelet transform with 3 types 

of mother wavelet is used to compare the 

evaluated values and validate EIS. 

The same method was used by Li et al. [20], 

to estimate the Warburg-like impedance 

spectrum, they all used the Morlet wavelet as 

the mother wavelet. This method was also 

used by George et al. [21], to estimate the 

Warburg-like impedance spectrum, they all 

used the Morse wavelet as the mother 

wavelet. In this paper, we compared three 

types of impedance spectrum estimation 

methods: Morlet wavelet, Morse wavelet, 

and lognormal wavelet and introduced the 

best method for estimating the impedance 

spectrum. To validate the proposed EIS 

method, we use a recent dataset [21], this data 

is used on a  3.0 𝐴ℎ 811 𝑁𝑀𝐶 −

 𝐺𝑟𝑎𝑝ℎ𝑖𝑡𝑒 18650  cylindrical lithium-ion 

battery of type 𝐿𝐺18650𝐻𝐺2 (𝐿𝐺 𝐶ℎ𝑒𝑚). 

Then, using the data of the same battery [21], 

using DRBS stimulation, the Nyquist 

characteristic was evaluated by processing 

the voltage and current signals with Morlet 

wavelet, Morse wavelet, and lognormal 

wavelet transformations. The objective is to 

demonstrate that the use of time-domain 

signals can produce findings that match those 

obtained using cutting-edge laboratory 

equipment. Also, we evaluate the signal with 

the best method by comparing the three 

wavelets of Morlet, Morse, and lognormal. 

2. Selection of the excitation signal  

In order to conduct EIS on batteries using 

conventional methods, a set of sine waves 

with multi or mono components is employed 

to obtain EIS values at various frequencies. 

According to system identification 

principles, a noise signal with a wide 

frequency range, like broadband, can excite 

the dynamics of the system over a broad 

frequency band. Such a signal should have 

several properties: stationarity, bandwidth 

encompassing the highest desired frequency, 

and adequate power spectral density for a 

reliable signal-to-noise ratio [22], [23].  

A signal that fulfills the properties described 

above can be produced using a random binary 

sequence. This signal alternates between two 

values, +𝑎 and −𝑎, in a random pattern. The 

frequency at which the value changes occur 

is governed by a Poisson distribution. For 

instance, if the intensity parameter of the 

Poisson distribution is set to 10, the signal 

will have a higher bandwidth and undergo 

 [
 D

O
I:

 1
0.

22
06

8/
as

e.
20

23
.6

35
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 a
za

da
nd

is
hi

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
19

 ]
 

                             2 / 10

http://dx.doi.org/10.22068/ase.2023.635
https://azadandishi.iust.ac.ir/ijae/article-1-635-fa.html


Mahdi Khoorishandiz et al. 

Automotive Science and Engineering (ASE)       4043 
 

more frequent changes than if the intensity 

parameter were set to 5. Switches in discrete-

time signals are constrained to occur only at 

discrete time points, which are determined by 

the minimum time between two switches 𝜆 

and integer multiples of this value 

𝑘𝜆(𝑘 𝜖 ℕ0) [22]. A DRBS is a collection of 

binary signals that are randomly distributed 

over time. Its time domain behavior and 

frequency content can be seen in FIGURE 1. 

The goal of using a DRBS to excite a system 

is to simultaneously excite the system with 

multiple frequencies. The optimal approach 

in an ideal situation is to use bandpass-

limited white noise. Equation (1) illustrates 

the power spectral density Φ𝑥
𝑑(𝜔) [21]. 

Φ𝑥
𝑑(𝜔) = α2𝜆 |

sin (
𝜔𝜆

2
)

𝜔𝜆

2

|

2

              (1 

 

 

Figure 1: The DRBS generated with 𝜆 = 3.3  seconds and 
effective bandwidth of  𝑓𝐵 = 0.1𝐻𝑧 is represented by the 
waveform in Figure (A). The power spectral density of this 
sequence, obtained from a 300-second excitation, is 
illustrated in Figure (B). 

 

The amplitude of the signal is represented by 

the letter 𝑎, while the angular frequency is 

denoted by 𝜔 , and the minimum time 

between two signal switches is called 𝜆. The 

power spectrum of the signal shows a 

complete absence of frequencies at integer 

multiples of 1/𝜆. The useful and almost flat 

part of the 𝑓𝐵 frequency band is determined 

by the pass frequency, −3𝑑𝑏, which is 𝑓𝐵 =

1/3𝜆 [26]. FIGURE 1 (b) displays the power 

spectral density of a DRBS, which is a signal 

that exhibits statistical similarities to white 

noise [24]. 

3. Wavelet transform and selecting the 

mother wavelet 

There are different types of mother wavelets, 

each of which has specific strengths and 

weaknesses. According to the purpose of 

impedance analysis, Complex mother 

wavelets exclusively qualify for 

consideration. The Morlet wavelet [27], 

Morse wavelet [28], [29], and lognormal 

wavelet [30] are the most remarkable mother 

wavelets utilized in the continuous wavelet 

transform. The time-frequency resolution is 

the most prevalent criterion used to select the 

mother wavelet [25], [26], [30]. It determines 

the minimum time and frequency difference 

needed to distinguish two mono-component 

sinusoidal signals in a wavelet function [25]. 

4. Impedance evaluation using continuous 

wavelet transform 

Impedance can be determined using 

Continuous Wavelet Transform (𝐶𝑊𝑇) just 

like how it is done with Fourier transform. By 

performing 𝐶𝑊𝑇  on voltage 𝑢(𝑡) and 

current 𝑖(𝑡) , one can obtain a series of 

complex wavelet coefficients that help in 

impedance analysis. 

𝑊𝑖(𝑡, 𝑓) = ℜ{𝑊𝑖(𝑡, 𝑓)}

+ 𝑗ℑ{𝑊𝑖(𝑡, 𝑓)} 
(2 

𝑊𝑢(𝑡, 𝑓) = ℜ{𝑊𝑢(𝑡, 𝑓)}

+ 𝑗ℑ{𝑊𝑢(𝑡, 𝑓)} 

(A) 

(B) 
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𝑊𝑥(𝑡, 𝑓) is used to indicate the wavelet of a 

signal 𝑥(𝑡), and it is a function of both time 𝑡 

and frequency 𝑓 . The impedance is 

determined by the ratio of the wavelet 

coefficients, namely 𝑖(𝑡) and 𝑢(𝑡). 

𝑍(𝑡, 𝑓) =
𝑊𝑢(𝑡, 𝑓)

𝑊𝑖(𝑡, 𝑓)
 (3 

Equation 3 computes the impedance with 

respect to time and frequency, and it delivers 

the magnitude and phase at any moment and 

frequency point. Hence, it is viable to 

monitor the alterations in the phase 

component of impedance for every frequency 

over time [21]. 

4.1. Initial reference measurements  

FIGURE 2 shows the initial EIS 

measurement curve as a black X, taken after 

5 charge/discharge cycles. This curve was 

measured at 68 frequency points between 

1𝑚𝐻𝑍  and 10𝐾𝐻𝑍 , with 10 points per 

decade, each measured for 1 period. The 

measurement process lasted 96 minutes, with 

inter-frequency breaks. The impedance 

profile exhibits a semicircle between 3𝐻𝑧 

and 5𝐾𝐻𝑧  and constant-phase capacitance 

properties below 3𝐻𝑧, as anticipated [21]. 

 

Figure 2: The initial EIS measurement curve is indicated by 
the black X. 

 

4.2. Impedance evaluation using DRBS 

excitation and Morlet wavelet transform 

  

𝜓𝜔0(𝑡) = 𝜋−
1

4(𝑒𝑗𝜔0𝑡 − 𝑒−
𝜔0

2

2 )𝑒−
𝑡2

2  (4 

Ψ𝜔0(𝑡) = 𝜋
1

4𝑒−
(𝜔−𝜔0)2

2 (1 − 𝑒−𝜔𝜔0) (5 

 

By utilizing a recent dataset [21], impedance 

evaluation was conducted through discrete 

random binary sequence excitation to 

generate the Nyquist characteristic. The 

Morlet wavelet transform was employed to 

process the voltage and current signals, and 

the obtained data was compared with the 

reference values in FIGURE 3. Equations (4) 

and (5) were utilized to derive the Morlet 

wavelet and its Fourier transform. 

where 𝜔0  is the central frequency. To 

achieve a high level of focus in both the time 

and frequency domains, one can turn to the 

Morlet wavelet, which is a wavelet transform 

specifically designed for this purpose. This is 

accomplished by optimizing its properties to 

minimize the area of the Heisenberg box, 

which is equal to  ∆𝑡∆𝜔=
2𝜋

√2
. While the 

Morlet wavelet is widely used in signal 

analysis due to its.  

 

  
Figure 3: The comparison between the EIS measurement 
curve with the value evaluated using DRBS excitation and 
Morlet wavelet transform is shown. 

strong properties, it also has some drawbacks. 

One of these is that it relies on a single 
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parameter 𝜔0, which can limit its flexibility. 

Additionally, there are restrictions on the 

analytical choices of this parameter when it is 

less than 𝜔0 < 5𝑠−1 [28]. 

 

4.3. Impedance evaluation using DRBS 

excitation and Morse wavelet 

transformation  

 

The evaluation of impedance was carried out 

using the most recent datasets [21], where 

DRBS excitation was utilized to derive the 

Nyquist characteristic. Morse wavelet 

transformation was applied to the voltage and 

current signals to accomplish this. 

FIGURE 4 shows the comparison between 

data using Morse wavelet transform and 

reference values. The Morse wavelet in the 

frequency domain is defined by equation (6) 

[28]: 

 

Ψ(𝜔) = 𝑈(𝜔)𝐾𝛼,𝛽𝜔𝛽𝑒−𝜔𝛼
 

(6 

When computing the normalizing coefficient 

𝐾𝛼,𝛽 in wavelet transforms, it is common to 

use the Heaviside unit step function, which is 

represented as 𝑈(𝜔) . However, Morse 

wavelet equation (7) is used for efficient 

computation of the normalizing coefficient 

during analysis [25]: 

𝜓(𝜔) = 𝑈(𝜔)𝑒
−𝜔𝛼+𝑞(log 𝜔+

1

𝛼
𝑙𝑜𝑔

𝛼𝑒

𝑞
)
 (7 

 
Figure 4: The comparison between the initial EIS 
measurement curve with the value evaluated using DRBS 
excitation and Morse wavelet transformation is shown. 

where the parameter 𝑒  represents Euler's 

number and 𝑞 with the central frequency 𝜔0 

as 𝜔0 =
𝑞(1/𝑎)

𝑎
. 

 

4.4. Impedance evaluation using DRBS 

excitation and lognormal wavelet 

transformation 

Impedance was evaluated using the recent 

dataset [21], with DRBS excitation and 

lognormal wavelet transformation of voltage 

and current signals to obtain the Nyquist 

characteristic. FIGURE 5 shows the 

comparison between the data using the 

lognormal wavelet transformation and the 

reference values. The lognormal wavelet can 

outperform the Morlet wavelet in certain 

conditions, providing better time-frequency 

resolution due to its logarithmic frequency 

resolution. The lognormal wavelet is defined 

by (8) [25]: 

�̂�(𝜉 > 0)~𝑒−
(2𝜋𝑓0𝑙𝑜𝑔𝜉)2

2  , 𝜔𝜓 = 1 (8 

In the wavelet transformation, the resolution 

of 𝑓0  parameter is akin to the Gaussian 

window, which is responsible for controlling 

the time and frequency resolution of the 

resulting output.  The lognormal wavelet 

usually exhibits slightly superior resolution 

properties compared to the Morlet wavelet, 

making it "infinitely admissible." This means 

that all moments of the wavelet, including 

∫ 𝜉−𝑛�̂� (𝜉)𝑑𝜉/𝜉 (𝑛 ≥ 0) , are finite unlike 

the Morlet wavelet [25]. 

The wavelet transform of a component 

enables direct reconstruction of its amplitude 

and phase derivatives. This feature is possible 

due to the analytical tractability of the 

wavelet, which provides explicit access to 

𝐶𝜓 and other relevant quantities [25]. 

Like the central frequency of the Morlet 

wavelet, the parameter 𝜔0 also serves as the 
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central frequency in the wavelet transform . 

The lognormal wavelet can also achieve a 

computationally efficient implementation of 

the continuous wavelet transform through the 

use of frequency domain convolution using 

the fast Fourier transform, which is similar to 

the process utilized by the Morlet wavelet.  

The lognormal wavelet gradually improves in 

time-frequency resolution 𝛾𝜔𝑡 , and 

outperforms the Morse wavelet at 𝑒𝑟 ≥  0.1 . 

It also has many other advantages, so it is a 

preferable choice among those listed in 

TABLE 1 [25].  

 

 
Table1: Types of wavelets and their 

characteristics (if known analytically) 

Name Description and characteristics 

L
o

g
n

o
rm

a
l 

 

�̂�(𝜉) = 𝑒−
(2𝜋𝑓0𝑙𝑜𝑔𝜉)2

2  , 𝜉𝜖(0, ∞) 

 

𝑅𝜓(𝜔) =
1

2
[
erf((2𝜋𝑓0)−1𝑙𝑜𝑔𝜔)

√2

+ 1] ,  𝜉1,2(𝜖)

= exp [±
𝑛𝐺(𝜖)

2𝜋𝑓0
] 

𝜔𝜓 = 1 , 𝐶𝜓 =
√

𝜋

2
𝑓0

−1

2𝜋
  , 𝐷𝜓

= 𝐶𝜓𝑒
1

2
(4𝜋2𝑓0

2)
−1

 

M
o

rl
et

 

�̂�(𝜉)

= 𝑒−(𝜉−2𝜋𝑓0)2
(1 − 𝑒−2𝜋𝑓0𝜉), 𝜉𝜖(0, ∞) 

𝜓(𝑡)

=
1

√2𝜋
𝑒−𝑡2/2𝑒𝑖2𝜋𝑓0𝑡

+ Ο (𝑒−
(2𝜋𝑓0)2

2 ) , 𝑡𝜖(−∞, ∞) 

 

𝜔𝜓 = 2𝜋𝑓0 + Ο (𝑒−
(2𝜋𝑓0)2

2 ) , 𝐷𝜓 = ∞ 

 

G
en

er
a

li
ze

d
 

M
o

rs
e 

fa
m

il
y
 

𝑞 = 30𝑓0/𝛼 

�̂�(𝜉) = 𝐵𝜉𝑞𝑒−𝜉𝛼

= 𝑒−𝜉𝛼+𝑞𝑙𝑜𝑔𝜉+log 𝐵, 𝜉 𝜖(0, ∞), 𝐵

≡ (𝑒𝛼/𝑞)𝑞/𝛼 

𝐷𝜓 =
𝜔𝜓𝐵

2𝑎
Γ((𝑞 − 1)/𝑎)(= ∞ 𝑓𝑜𝑟 𝑞

≤ 1) 

𝜔𝜓 = (𝑞/𝑎)1/𝑎 , 𝐶𝜓 =
𝐵

2𝑎
Γ(q/a) 

 

The resolution parameter 𝑓0 for each wavelet 

is set so that at 𝑓0 = 1 they all have the same 

frequency resolution [25]. 

 

Figure 5: The comparison between the initial EIS 
measurement curve with the value evaluated using DRBS 
excitation and lognormal wavelet transformation is shown. 

5. Comparison of mother wavelets  

 

FIGURE 6 displays three curves on a single 

page to compare the performance of the three 

methods. To provide a more detailed 

analysis, we have magnified the areas with 

noticeable differences and presented them in 

FIGURES 7 and 8. As can be clearly seen in 

FIGURES 7 and 8, the lognormal wavelet 

performs better than the other two wavelet 

types in most points. Also, Morlet wavelets 

lose their analytical properties at low 

frequencies. To obtain accurate impedance 

measurements, it is essential to consider 

time-frequency resolution, and as such, the 

use of lognormal wavelets is advised. 
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Figure 6: The comparison between the initial EIS 
measurement curve with the value evaluated using DRBS 
excitation and Morlet, Morse, and lognormal wavelet 
transformation is shown. 

 
Figure 7: Magnified figure of the comparison between the 
initial EIS measurement curve with the value evaluated 
using DRBS excitation and Morlet, Morse, and lognormal 
wavelet transformation is shown. 

 

Figure 8: Magnified figure of the comparison between the 
initial EIS measurement curve with the value evaluated 
using DRBS excitation and Morlet, Morse, and lognormal 
wavelet transformation is shown. 

 

 

 

6. Description of the dynamic time  

warping (DTW) algorithm  

 

If two time series 𝑄(𝑡), 𝑃(𝑡) with length 𝑀, 

𝑁 are assumed, we have: 

𝑄(𝑡) =  𝑞1 , 𝑞2 , . . . , 𝑞𝑀 

 
(9 

𝑃(𝑡) = 𝑝1 , 𝑝2 , . . . , 𝑝𝑁 

To make the above signals correspond, DTW 

uses a matrix with dimensions of the length 

of two signals, whose matrix elements 

include the distance 𝐷𝑖𝑠𝑡(𝑖, 𝑗) between two 

points of the two signals. The distance 

criterion is usually defined as the distance 

between two signals based on DTW, 

𝐷𝑖𝑠𝑡(𝑖, 𝑗) = (𝑝𝑖 − 𝑞𝑗)2 , although any other 

criterion can also be defined.  

By defining the cumulative distance 𝐷(𝑖, 𝑗), 

the elements of the correspondence matrix 

are: 

𝐷(𝑖, 𝑗)= 𝐷𝑖𝑠𝑡(𝑖, 𝑗) + 𝑚𝑖𝑛 {

𝐷(𝑖 − 1, 𝑗)
𝐷(𝑖 − 1, 𝑗 − 1)

𝐷(𝑖, 𝑗 − 1)
 (10 

 

the above equation shows that the twist path 

is calculated inversely and from the element 

(𝑁, 𝑀) of the matrix. In each step, by finding 

the lowest value in all three paths, the 

correspondences are determined until finally 

it ends in the first layer of the matrix.  

To calculate the distance between two 

samples of two signals, we calculate the 

distance based on DTW of two samples 

(Euclidean distance) with equation (13) as 

follows [31]: 

𝑑(𝑥, 𝑦) = |𝑥 –  𝑦| (11 

 

It is also possible to calculate the distance 

between two signals based on DTW (squared 

Euclidean distance) with the following 

equation instead of (13) [32]: 
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𝑑2(𝑥, 𝑦) = |𝑥 –  𝑦|2 (12 

 

in this paper, equation (13), distance based on 

DTW, 𝑑(𝑥, 𝑦) = |𝑥 –  𝑦| is used. 

7. Comparison of mother wavelets using 

dynamic time Warping algorithm 

DTW (dynamic time warping) is an 

algorithm for measuring the similarity 

between two time series (signals) that may 

differ in speed or time. DTW is one of the 

powerful tools which employed in the fields 

of classification, data mining and regional 

matching of two signals. DTW can find the 

corresponding points based on the 

optimization of the distances between the 

points of two signals and by expanding and 

contracting the time axis at each point. 

Table2: Comparison of mother wavelets using 

DTW 

Mother wavelet 

Distance calculated 

from DTW 

algorithm 

Morlet 3.5504 

Morse 3.5457 

Lognormal 3.4086 

 

Comparing the DTW distance between the 

reference and several different wavelets, 

TABLE 2 reveals that the lognormal mother 

wavelet has the smallest difference. This 

finding suggests that the lognormal wavelet 

is the most accurate choice for impedance 

evaluation. 

8. Conclusion 

The paper shows that using DRBS excitation 

with a lognormal wavelet for broadband EIS 

is a better procedure than the conventional 

approach using sinusoidal signals. This 

approach enables faster measurements and 

improved accuracy, as well as the ability to 

evaluate impedance at any frequency point 

using broadband excitation.  Utilizing a 

lognormal wavelet to generate broadband 

excitation in system analysis enables the 

examination of a broad range of frequencies, 

providing a comprehensive understanding of 

the behavior of the system under study. 

Overall, this approach represents an 

important advance in the field of EIS, 

enabling researchers to perform more 

accurate and comprehensive analyses in less 

time. Using a tool that quickly and accurately 

measures impedance at low frequencies can 

help estimate battery health. These benefits 

demonstrate the usefulness of EIS based on 

continuous wavelet transform with a 

lognormal mother wavelet. 
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