

Rod ABCD is made from aluminum ($E = 10 \times 10^6$ psi) and is subjected to the three applied forces shown. Neglect the weight of the rod, and determine the displacement of point A.

Rigid beam \mathcal{ABE} is supported by two steel rods (\mathcal{E} = 30 \times 10⁶ psi) and subjected to a 2000-lb load applied at \mathcal{E} . Determine the length (\mathcal{L}) of beam \mathcal{ABE} so that the angle formed by the beam and a

0.10

horizontal reference line does not exceed 0.1°.

The stepped steel rod (E= 200 GPa) shown is subject to intermediate loads of 325 kN and 650 kN. We wish to determine the reactions at A and E.

 Steel
 Aluminum

 $A = 2.5 \text{ in.}^2$ $A = 3.75 \text{ in.}^2$
 $E = 30 \times 10^6 \text{ psi}$ $E = 10 \times 10^6 \text{ psi}$
 $\alpha = 6.5 \times 10^{-6} / ^0 \text{F}$ $\alpha = 12.8 \times 10^{-6} / ^0 \text{F}$

Steel (AB) and aluminum (BC) bars are connected at B and placed between two fixed supports. There is a 0.036-in, gap between the aluminum bar and the support on the right. Determine the compressive stress in each bar after a temperature change of $300^{\circ}F$.

Rigid beam (ABCD) is supported by a pinned connection at B, an aluminum rod (AE), and a steel rod (EF). The cross-sectional area of both rods is 2.5 in.². A 20-kip load is applied at D. If both rods are heated from room temperature ($70^{\circ}F$) to $170^{\circ}F$, determine the compressive force in rods AE and EF.

Rigid bar \mathcal{AEE} is supported by links \mathcal{AB} and \mathcal{ED} . Both links experience a temperature change of \triangle \mathcal{F} = 100°C. Determine the deflection of points \mathcal{A} , \mathcal{E} , and \mathcal{E} if a force of 40 kN is applied at \mathcal{E} and

$$(\alpha)_{AB} = 24 \times 10^{-6} \text{ mm/mm/}^{\circ}\text{C}$$
 $(\alpha)_{CD} = 12 \times 10^{-6} \text{ mm/mm/}^{\circ}\text{C}$
 $(AE)_{AB} = 12 \times 10^{6} \text{ N}$
 $(AE)_{CD} = 32 \times 10^{6} \text{ N}$

A 22-in. section of steel with a 1.375-in. 2 cross-sectional area rests on a rigid platform supported by two aluminum plates (1.5 \times 7.5 \times 18 in.). A 35-in.-long brass rod (0.625-in. diameter) supports a 20-kip load at F, while the end is attached to a rigid bar (H) resting on the hollow steel cylinder. Neglect the weight of each component and determine the deflection of point F.