

A rectangular block with  $\mathcal{B}$  = 700 MPa is bonded to two rigid horizontal plates. The lower plate is fixed, and the upper plate is subjected to a force  $\mathbf{P}$ , which causes it to move 0.5 mm. Determine the shear strain in the plate and the load  $\mathbf{P}$ .



Determine the strains corresponding to the state of stress shown knowing E=200 GPa, G=76.92 GPa, and V=0.3.

3)



Element ABCD has dimensions of 23 mm  $\times$  30.5 mm before deforming to the element defined by ABCD'. Determine the state of plane stress required to cause this deformation knowing that E= 200 GPa, G= 75 GPa, and V= 0.33.

 $\delta_{xx} = 0.0045 \text{ mm}, \delta_{yy} = 0.003 \text{ mm}, \delta_{xy} = 0.0035 \text{ mm}, \delta_{yx} = 0.0015 \text{ mm}$ 



Material element  $\mathcal{ABCD}$  has original dimensions of 2 in.  $\times$  2.75 in. before deforming to the element defined by  $\mathcal{ABCD}'$ . Determine the shear strain corresponding to this deformation.



Three cables support a rigid beam  $\mathcal{ABC}$ . End  $\mathcal L$  of the beam displaces cable  $\mathcal LF$  by 0.0014 in. In addition, beam  $\mathcal AB\mathcal L$  displaces so that it makes an angle of 0.1° as indicated. Determine the normal strain in each cable.