A rectangular block with \mathcal{B} = 700 MPa is bonded to two rigid horizontal plates. The lower plate is fixed, and the upper plate is subjected to a force \mathbf{P} , which causes it to move 0.5 mm. Determine the shear strain in the plate and the load \mathbf{P} . Determine the strains corresponding to the state of stress shown knowing E=200 GPa, G=76.92 GPa, and V=0.3. 3) Element ABCD has dimensions of 23 mm \times 30.5 mm before deforming to the element defined by ABCD'. Determine the state of plane stress required to cause this deformation knowing that E= 200 GPa, G= 75 GPa, and V= 0.33. $\delta_{xx} = 0.0045 \text{ mm}, \delta_{yy} = 0.003 \text{ mm}, \delta_{xy} = 0.0035 \text{ mm}, \delta_{yx} = 0.0015 \text{ mm}$ Material element \mathcal{ABCD} has original dimensions of 2 in. \times 2.75 in. before deforming to the element defined by \mathcal{ABCD}' . Determine the shear strain corresponding to this deformation. Three cables support a rigid beam \mathcal{ABC} . End $\mathcal L$ of the beam displaces cable $\mathcal LF$ by 0.0014 in. In addition, beam $\mathcal AB\mathcal L$ displaces so that it makes an angle of 0.1° as indicated. Determine the normal strain in each cable.