
 

 

Chapter 8 

CONDITIONING OF 

STRUCTURAL MATRICES 

 

8.1   INTRODUCTION 

The use of the digital computer for problems in structural analysis requires the 

solution of a large system of algebraic equations of the form 

  Ax = b, (8-1) 

as also cited at the opening of Chapter 7. This is true both for the force method and 

the displacement approach. Sometimes the solution of Eq.(8-1) changes greatly by 

small perturbation in matrix A. Then we say A is ill-conditioned with respect to this 

solution. The accuracy of the solution of Eq.(8-1) can be sensitive to the 

characteristics of the matrix A. Therefore it is important to study these 

characteristics and their inter-relationships with the source, propagation and 

distribution of possible errors. In doing so, better methods of problem formulation 

must be found and techniques for predicting, detecting and minimizing solution 

errors must be devised.The ill-conditioning of stiffness matrices for the displacement 

method of analysis was studied by Shah [166]. In his work, methods were suggested 

for improving conditioning of the stiffness matrices. A mathematical investigation of 

matrix error analysis is due to Rosanoff and Ginsburg [158]. In their work, it was 

shown that numerically unstable equations may arise in physically stable problems. 

Thus the need for routine measurement of matrix conditioning numbers associated 

with various patterns of formulation is emphasized. The effect of substructuring on 

conditioning of stiffness matrices was investigated by Grooms and Rowe [53] who 

concluded that substructuring does not significantly influence the solution accuracy 

of ill-conditioned systems. Filho [40] suggested an orthogonalization method for the 

best conditioning of flexibility and stiffness matrices; however, this is an impractical 

approach for multi-member complex structures. 
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Optimizing the conditioning of equilibrium equations when an algebraic force 

method is employed, was studied by Robinson and Haggenmacher [157]. For the 

combinatorial force method, studies have been limited to increasing the sparsity of 

cycle basis incidence matrices, Henderson [59] and Goodspeed and Martin [49] (see 

also Cassell [16] for a discussion on the latter reference). Recently, methods have 

been developed for selecting particular types of statical and kinematical bases 

leading to flexibility and stiffness matrices better conditioned than classical ones, 

Kaveh [89]. 

In structural engineering, one of the important sources of ill-conditioning is the use 

of members in a structure which have widely different stiffnesses (or flexibilities). 

The application of standard statical or kinematical bases (though optimal) leads to 

ill-conditioned structural matrices. In this chapter, methods are developed for 

generating special cycle and cut set bases corresponding to statical and kinematical 

bases which provide the best possible conditioning for flexibility and stiffness 

matrices, respectively. 

 

8.2   CONDITION NUMBERS 

In order to measure the conditioning of a matrix, various numbers are defined and 

employed in practice. Three commonly used condition numbers are defined in the 

following; they are simple and easy to use. 

8.2.1   THE RATIO OF EXTREME EIGENVALUES 

Eigenvalues and eigenvectors are related to the conditioning of matrices. The ratio of 
the extreme eigenvalues of a matrix | max | / | min | can be taken as its condition 

number. It can easily be shown that the logarithm to the base ten of this condition 

number is roughly proportional to the maximum number of significant figures lost in 

inversion or in the solution of simultaneous equations. Thus the number of good 

digits, g, in the solution, is given by 

  g = p _ log( | max | / | min |) = p _  PL. (8-2) 

In this relationship PL = log(| max | / | min |) and p is a number which varies from 

machine to machine. For example, the IBM/360 uses approximately eight digits for 
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single precision and 16 digits for double precision calculations. It should be 

mentioned that the above estimate is conservative, and experience shows that PL is 

one digit on the safe side. The importance of this condition number justifies more 

explanation and a simple numerical example. 

Symmetric matrices can be written as a linear combination of rank one matrices as 

  A = 
 �
i =1

n

ivi ui
t, (8-3) 

and  A-1 = 
 �
i =1

n

(1/i)vi ui
t
, (8-4) 

with vi  
t
ui = 1 for i=1,...,n. In the above equations i is the ith eigenvalue and vi is 

the corresponding eigenvector of A, and ui is the ith eigenvector of A-1 . Eq.(8-3) 

shows that the rank one matrices of the eigenvectors enter the matrix A in amount 

proportional to their respective eigenvalues. The lower mode of A becomes weakly 

represented as the ratio of extremal eigenvalues becomes large. Specifically, as a 
first approximation for each power of 10 in the ratio | max | / | min |, the lower 

mode will lose about 1 decimal digit in a finite computer number set representation 

of the matrix. On the other hand, the lower mode of A  is the upper mode of A-1, 

because the coefficients of the linear combination (the eigenvalues) are inverted. 

Therefore, inverting matrices without some feel for their conditioning can lead to 

wrong solutions. Consider a 22 matrix such as 

  
A = 

1/9 1/10

1/10 1/11
  = 

0.11111111 0.10000000

0.10000000 0.09090909
 .

 (8-5) 

The eigenvalues and eigenvectors of A with 8 digits are 

  


1
 = 0.20151896        v

1
 = u

1
 = 

0.74178794

0.67063452
,
  

  
2 = 0.0005012437      v2 = u2 = 

0.67063452

-0.74178794
,
 (8-6) 

leading to 1/2 = 402.0379 = 102.604. From Eq.(8-3) matrix A can be written as 
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  A = 1 v1 u1
t  + 2v2u

2
t
 

 
= 0.20151896 

0.74178794

0.67063452
0.74178794 0.67063452

  

 
+ 0.0005012437 

0.67063452

-0.74178794
0.67063452 -0.74178794

 

 
= 

0.11088567 0.10024935

0.10024935 0.090633285
+

 

0.00022543467 -0.00024935298

-0.00024935298 0.00027580902    

 
= 

0.11111111 0.099999997

0.099999997 0.090909094
 .

     (8-7) 

In forming this 8-digit approximation to the matrix, the component matrix 2v2u
2
t
 

which has three leading zeros in its elements, is truncated to about 5 digits. 

Therefore an 8-digit representation of the matrix A contains about 5 digits of 

information about the rank one matrix  v2u2
t
. 

Similarly consider A-1 formed as 

 

 A-1 =  1
1

v
1 

u
1
t  +  1

2

v
2
u

2
t

 

 
= 

2.7305090 2.468944

2.4685944 2.2318030

 

+ 
897.26951 -992.46859

-992.46859 1097.7681  

 

 = 
900.00002 -990.00000

-990.00000 1099.9999

 

  
900 -990

-990 1100 .
  (8-8) 

Notice that the rank of matrix  v2u2
t
 , which was only available to about 5 digits in 

the approximation of A, is the largest component of A-1. One should expect that five 

digits would be about the most one could obtain by numerically inverting the 

approximate matrix. 

The true inverse can be obtained using rational number arithmetic, and is shown in 

Eq.(8-7) to the right of approximation sign. Using eight digit arithmetic, the 

approximate matrix is inverted, yielding 
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= 

0.11111111 0.10000000

0.10000000 0.090909094

 -1

 = 
900.00089 -990.00099

-990.00099 1100.0011
.
 (8-9) 

The poorest terms in this approximate inverse are the off-diagonal terms which have 

barely 6 significant digits. For this matrix 

log10 |max| / |min| = log10 402.0379 = 2.604. 

Therefore one should expect the approximate inverse to be limited to 8 _ 2.6 = 5.4 

good digits. It should be mentioned that for positive definite and symmetric matrices 
the calculation of  |max| / |min| can be carried out by the power method, using 

Rayleigh´s Quotient. Since a structural matrix A is symmetric and positive definite, 

therefore the convergence of the procedure is ensured and the largest eigenvalue 
max of A can easily be calculated. The largest eigenvalue of A-1 provides the 

smallest eigenvalue of A. This method becomes especially simple if the inverse of 

the matrix is obtained as part of the calculation. However, the inversion of A can be 
avoided by using the fact that if the eigenvalues of A are min, ... , max , then the 

eigenvalues of cI _ A are c_min,..., c_ max. Therefore if constant c is greater than 

max,  then the largest eigenvalue of cI _ A will be c_min . This provides a simple 

approach for evaluating min. Simple computer programs for calculating min and 

max of a positive definite matrix are provided (see answer to problem 8.6). 

Some other condition numbers used in this book are described in the following. 
 

8.2.2   DETERMINANT OF A ROW-NORMALIZED MATRIX 

A simple and workable measure of conditioning of a set of equations is to evaluate 

the determinant of the row-normalized matrix of the coefficients of the set. This 
means that each row of matrix A, say Ai, is divided by 

  [ ai1
2

  + ai2
2

 + ...  + ain
2

]1/2 . (8-10) 

The magnitude of the determinant of the row-normalized A, denoted by PN, is a 

good measure for the conditioning of A. Obviously the magnitude of this 

determinant lies in the range  

   0 < PN ≤ 1, 
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since A is necessarily positive definite. The matrix with perfect conditioning has PN 

= 1, which occurs in the case of orthogonal or diagonal matrices. 
 

8.2.3   THE RATIO OF DETERMINANTS 

Since the best conditioned matrix for inversion is a diagonal one, the following 

parameter may also be adopted as a practical means to measure the conditioning of a 

matrix A. Define 

  
 = det [A] _ det [Aii], (8-11) 

where [Aii] is a diagonal matrix consisting of the diagonal entries of [A] and det 

means determinant. 

The value of  approaches zero for an ideally conditioned matrix. Therefore the 

following condition number, PDET, can be employed. 

  PDET = det [A] / det [Aii]. (8-12) 

For an ideally conditioned matrix, PDET should approach unity. This condition 

number is simple and very easy to calculate. 

 

8.3   WEIGHTED GRAPH AND AN ADMISSIBLE MEMBER 

The relative stiffnesses (or flexibilities) of members of a structure can be considered 

as positive integers associated with the members of the graph model of a structure, 

resulting in a weighted graph. 

Let S be the model of a frame structure and kmi denote the stiffness matrix of an 
element mi in a global coordinate system selected for the structure. A weight can be 

defined for mi, using the diagonal entries kii of kmi as 

  W(mi) = kii = 2 (1 + 4
z
 + 3

z
), (8-13) 

where  1 = 
EA
L  ,  4

z
 = 

12EI 
L3

  
and  3

z
 = 

4EI
L .
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A different  weight employing the square roots of the diagonal entries of  kmi  can 

also be used 

  W(mi) =   kii  = 2 [(1)1/2 +(4
z
 )1/2+ (3

z
)1/2]. (8-14) 

Other weight functions may be defined for representing the relative stiffnesses of the 

members of S, as appropriate. 

DEFINITION:   Let the weight of members m1, m2, ..., mM(S) be defined by W(m1), 

W(m2),..., W(mM(S)), respectively. A member mi is called F-admissible if  

  W(mi) ≥ 

1


W(mj )

M(S)
�
j=1

M(S)

  
,
 

(8-15) 

where  is an integer number which can be taken as 2,3, ... We have used =2; 

however, a complete study using other values of  is required. If a member is not F-

admissible, it is called inadmissible or S-admissible. 
 

8.4   OPTIMALLY CONDITIONED CYCLE BASES 

In order to optimize the conditioning of flexibility matrices, special statical bases, 

correspondingly cycle bases possessing particular properties, must be selected. 

A cycle basis is defined as an optimally conditioned cycle basis if: 

(a) It is an optimal cycle basis, i.e. the number of nonzero entries of the 

corresponding cycle adjacency matrix is minimum, leading to a maximal sparsity of 

the flexibility matrix. 

(b) The members of greatest weight of S are included in the overlaps of the cycles; 

i.e. the off diagonal terms of the corresponding flexibility matrix have the smallest 

possible magnitudes. 

A weighted graph may have more than one optimal cycle basis. The one satisfying 

condition (b) is optimally conditioned. However, if no such a cycle basis exists, then 

a compromise should be found in satisfying conditions (a) and (b). In other words, a 

basis should be selected which partially satisfies both conditions. Since there is no 
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algorithm for the formation of an optimal cycle basis, one should look only for a 

suboptimally conditioned cycle basis. 

EXAMPLE:  Consider a 33 grid as shown in Fig. 8.1(a), with the relative weights 

of the members being encircled. An optimal cycle basis of S contains 9 regional 

cycles (mesh basis) and corresponds to  

L
T
 = L(Ci�

i=1

8
  C

i+1
) = 1+1+1+2+2+1+2+2=12.

 
The weight of the members contained in the overlaps is determined as  
 

W
T
 = W(Ci�

i=1

8
  C

i+1
) =2+2+10+12+12+1+3+3 = 45,

 

where LT and WT are the length and weight of the overlaps of the selected cycles, 

respectively. 

 

 

 

 

(a)  A weighted graph S.                       (b)  An optimal cycle basis of S. 

 

 

 

 

 

(c)   A suboptimally conditioned cycle basis. 

Fig. 8.1   A single layer rigid-jointed grid S. 

A suboptimal cycle basis of S is illustrated in Fig. 8.1(c) for which 
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L
T
´  = L(Ci�

i=1

8
  C

i+1
) =1+1+1+2+2+2+4+4=17.

  

The weight of the members contained in the overlaps is calculated as 

W
T
´  = W(Ci�

i=1

8
  C

i+1
) =2+2+10+12+12+14+16+16 = 84.

 

The weight of the overlaps of the selected cycles is considerably increased at the 

expense of some increase of their lengths, hence some decrease in the sparsity of its 
cycle adjacency matrix. Obviously WT can be further increased; however, the 

decrease of sparsity will significantly influence the optimality of the cycle basis. 

In this structure, the members of weight 1 are inadmissible according to the 

definition of the previous section, since  
1< 1

2
  69

24
 = 1.43.

  

8.4.1  FORMULATION OF THE PROBLEM 

The problem of selecting an optimally conditioned cycle basis can be stated in the 

following mathematical form 

Min L(Ci  Ci+1�
i=1

b1(S)-1

),
 

and 

Max W(Ci  Ci+1�
i=1

b1(S)-1

),
  

where S is a contracted S as defined in Chapter 6, and 
 
 Ci = C

j

j=1

i
.  

As can be seen, the problem is a multi-objective optimization problem, and the 

following algorithms are designed such that both objective functions are partially 

satisfied simultaneously. 

 

8.5  SUBOPTIMALLY CONDITIONED CYCLE BASES 
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In this section three algorithms are developed for the selection of suboptimally 

conditioned cycle bases of a weighted graph. On each selected cycle three or six 

S.E.Ss are formed depending on S being a planar or a space frame, respectively. The 

condition number of the flexibility matrix corresponding to the selected statical basis 

is obtained using the methods of Section 8.2. 

8.5.1  ALGORITHMS 

ALGORITHM A 

This algorithm uses the chords  of a special spanning tree to ensure the independence 

of the selected cycles. In order to avoid the inclusion of inadmissible chords in  

intersections of the cycles, such chords are not added to the set of members to be 

used for generation of the cycles of S. 

Step 1. Select  the centre "O" of S with a graph or algebraic graph theoretical method 

as described in Chapter 7. 

Step 2.  Generate an SRT using the members of highest weights, i.e. 

 2.1  Take all members incident with O and assign "1" to the other ends. 

 2.2  Find all members incident with nodes denoted by "1" and order them in 

 ascending magnitude of their weights. 

 2.3  Select the tree members from the above ordered members, and assign "2" 

to  the other ends. 

Step 3.   Repeat Step 2 as many times as needed until all the nodes of S are spanned 

and an SRT is formed. 

Step 4.   Order the members incident with "1" in ascending magnitude of weight and 

use the members of maximal weight as the chord of the first minimal length cycle. If 

this chord is an F-admissible one, add it to the list of the tree members, and denote 

this list by Tc. 

Step 5.   Generate the second shortest length cycle on the second maximal weight 

member incident with "1" using the members of Tc. Again add the chord to Tc if it is 
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F-admissible. Continue this process until all the chords incident with the nodes 

labelled as "1" are used. 

Step 6.   Repeat Steps 4 and 5 for all  the nodes labelled by "2". Repeat this process 

sequentially for all the nodes labelled by 3,4,...,k, until a basis is selected. 

This algorithm generates suboptimally conditioned cycle bases, and has the 

following advantages compared with the algorithm for generating a fundamental 

cycle basis.  

(a)  Starting node at the centre of S, limits the length of the generated cycles. 

(b) Employing the used chords in the formation of cycles: reduces the length of 

the  selected cycles. 

(c) Forbidding the addition of F-inadmissible chords: prevents the inclusion of 

 weak members in the overlaps of the cycles. 

(d) Using members of highest weight in each stage of generating an SRT: leaves 

the  weaker members as chords, which can be excluded because of inadmissibility. 

One can select an spanning tree of maximal weight employing the Greedy Algortihm 

(see Chapter 9), in place of an SRT of maximal weight with respect to the centre 

node of S; however, in general, longer cycles will then be selected corresponding to 

a cycle adjacency matrix of less sparsity. 

An improvement may be achieved by comparison of the centre node (or nodes) and 

adjacent nodes to select a node of higher average weight as a starting node. The 

average weight of a node is taken as  

 weights of the members incident with ni / deg ni. 

This improvement is due to the inclusion of all the members of the root node in Tc. 

EXAMPLE:   In the following a simple grid is considered, and the drawback of 

using an spanning tree of maximal weight compared with an SRT of maximal weight 

rooted at the centre node O is illustrated. The inadmissible members are shown in 

dashed lines, and the selected trees are illustrated in bold lines. Using an spanning 

tree results in much longer cycles, corresponding to a less sparse cycle adjacency 
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matrix D. This in turn leads to a conditioning of G which in general is worse than 

the result obtained by an SRT. 

 

 

 

 

 

 

(a)  A cycle basis generated using an SRT.  (b)  A cycle basis using an spanning tree. 

Fig. 8.2   Comparison of two different cycle bases. 

ALGORITHM B 

In this algorithm, the formation of disjoint cycles is permitted, to enable the 

generation of short cycles. However, the simplicity of the independence check in 

Algorithm A can not be maintained. 

Step 1.   Assign weights to the members of S and order them in ascending order of 

their weights. 

Step 2.   Select a member of minimal weight m1
g
 and form a cycle of maximal 

possible weight out of the existing minimal length cycles on m1
g
. 

Step 3.   Select the next admissible cycle of minimal length on the second unused 

member of minimal weight, having the maximum possible weight and containing 

members from S - m1
g
. 

Step 4.   Repeat the process of Step 3 selecting an admissible cycle 
C

j of minimal 

length which has maximal possible weight, containing members from 
 
S - m

i
g

i=1

j-1

 
. 

Step 5.   Repeat Step 4 until a set of b1(S) independent cycles forming a 

suboptimally conditioned cycle basis is formed. 
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In this algorithm also the formation of disjoint cycles enables the formation of short 

cycles at early stages of the algorithm; however, excluding m1
g
 after forming the 

corresponding cycle leads to the generation of longer cycles in later stages. 

EXAMPLE:  Consider a simple 33 grid with weights assigned to its members, as 

shown in Fig. 8.3(a). 

 

 

 

 

 

 

(a)  A weighted graph.                   (b)   The generated cycle basis. 

Fig. 8.3   A 33 grid and the selected cycle basis. 

The cycles generated are depicted in Fig. 8.3(b), in which 7 cycles of length 4 are 
formed. However, for cycles 8 and 9, because of excluding 

 
m

i
g

i=1

7  , the generated 

cycles are long, leading to a less sparse D matrix. 

ALGORITHM C 

This algorithm is a modified version of Algorithm 3 presented in Chapter 6 (p.175) 

for selecting a suboptimal cycle basis of S, in which the relative stiffnesses of the 

members are also taken into account.  

Step 1.  Contract S into S´ by replacing all paths with nodes of degree 2 by a single 

member. If a path contains an F-inadmissible member, then the replaced member 

will also be taken as F-inadmissible. 

Step 2. Calculate the incidence number and cycle length number of the members of 

S. 



14 STRUCTURAL MECHANICS: GRAPH AND MATRIX METHODS 
Step 3.  Start with a member of the least cycle length number and generate a minimal 
weight cycle C1 on this member. The weight of a cycle in this algorithm is taken as 

the sum of the incidence numbers of its members. 

Step 4.  Generate the second admissible cycle of minimal weight C2 on the next 

member of the least cycle length number. If C1  C2 contains an F-inadmissible 

member, and C1  C2 does not contain such a member, then replace C2 by C1  C2 
otherwise take C2 as the second cycle of the basis. 

Step 5.   Subsequently select the kth admissible smallest weight cycle Ck on the 

unused member by the least cycle length number. If Ck-1  C
k contains an F-

inadmissible member, and 
 C

k
 C

j  does not have such a member, then replace Ck 

by 
 C

k
 C

j, otherwise take Ck as the kth cycle. In the above relationship Cj are all 

the generated cycles adjacent to Ck. 

Step 6.   The process of Step 5 should be continued as far as the generation of  

admissible minimal weight cycles is possible. After a member has been used as 

many times as its incidence number, before each extra usage, increase the incidence 

number of such a member by unity. 

Step 7.   On an unused member of the least length number, generate one admissible 

cycle of the smallest weight. This cycle is not a minimal weight cycle, otherwise it 

would have been selected at Step 6. Such a cycle is known as a subminimal weight 

cycle. Again a process similar to Step 5 should be performed for possible 

interchange of the cycle, and the incidence numbers should be updated for each extra 

usage. Now Step 6 should be repeated, since the formation of the new subminimal 

weight cycle may have altered the admissibility condition of the other cycles, and 

the selection of further minimal weight cycles may now have become possible. 

Step 8.   Repeat Step 7, selecting minimal and subminimal weight cycles with the 
process of combining for better conditioning, until b1(S´) = b1(S) cycles are 

generated. 

Step 9.   A reverse process to that of the contraction performed in Step 1 transforms 

the selected cycle basis of S´ to that of S. 
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This algorithm is implemented on a PC and the improvements obtained on the 

conditioning of the flexibility matrices by using this method are studied by some 

examples. The results are compared with those of Algorithm 3 of Chapter 6. 

8.5.2   EXAMPLES 

EXAMPLE 1:   A three - storey frame is considered, as shown in Fig. 8.4. Three 

cases are studied using two types of member properties: 

  Type 1      A1 = 0.00106m2     I1 = 0.00000171m4 

  Type 2      A2 = 0.00970m2     I2 = 0.0001961m4. 

 

 

 

 

(a)                                (b)                                (c) 

Fig. 8.4   Three - storey frames with different member properties. 

The elastic modulus of the material is taken as E = 2.1108 kN/m2 and all the 

members have L=3m. Type 1 members are shown in normal lines and type 2 

members are illustrated in bold lines. 

Algorithm 3 of Chapter 6 is applied to these frames and in all the cases regional 

cycles are formed as an optimal (minimal) cycle basis. For each cycle 3 S.E.Ss are 
generated, and B1 and the corresponding flexibility matrices G are formed. The 

condition numbers for these matrices are listed in Table 8.1. 

 

  ____________________________________________________ 

  Type PL PN PDET 
  ____________________________________________________ 

  (a) 1.971889 9.934432E_6 7.932374E_4  



16 STRUCTURAL MECHANICS: GRAPH AND MATRIX METHODS 
  (b) 3.611656 9.322886E_11 4.257163E_8 

  (c) 3.692658 6.496687E_13 4.944418E_10 

  ____________________________________________________ 

                    Table 8.1  Condition numbers for Example 1. 

 

Algorithm C of this chapter selected the following cycles as a suboptimally 

conditioned cycle basis: 

For (a)         C1 =  (7,9,1),         C2 = (4,5,8,3)       and    C3 = (2,8,6,9). 

For (b)         C1 = (7,9,1),          C2 = (4,5,8,3)       and    C3 = (2,8,6,7,1). 

For (c)          C1 = (7,9,1),          C2 = (4,5,8,3)       and    C3 = (2,8,6,7,1). 

The corresponding flexibility matrices have condition numbers as listed in Table 8.2. 

The improvements in PN and PDET are apparent and a slight increase in PL shows 

the inconsistency of the three different condition numbers. 

 
  ____________________________________________________ 

  Type PL PN PDET 
  ____________________________________________________ 

  (a) 1.971889 9.934432E_6 7.932374E_4 

  (b) 4.160444 1.438844E_7 1.224165E_5 

  (c) 3.883811 1.915509E_7 2.248523E_5 
  ____________________________________________________ 

          Table 8.2  Improved condition numbers for Example 1. 

 

EXAMPLE 2:   A two - storey frame with three bays is considered, as shown in Fig. 

8.5. The same member properties are used and three cases are studied. The 

calculated condition numbers are listed in Table 8.3. For this purpose Algorithm 3 of 

Chapter 6 is used and the selected cycle bases are optimal for all three cases. 



Chapter 8  CONDITIONING OF STRUCTURAL MATRICES 17 
 

 

 

 

(a)                                    (b)                                    (c) 

Fig. 8.5  Two - storey frames with different member types. 

  ____________________________________________________ 

  Type PL PN PDET 
  ____________________________________________________ 

  (a) 2.95416 2.870534E_14 7.828693E_10 

  (b) 4.504203 5.23706E_28  1.030332E_24 

  (c) 4.311532 5.23706E_28  8.155067E_22 

  ____________________________________________________ 

                  Table 8.3  Condition numbers for Example 2. 

Algorithm C (Section 8.5.3) is applied, and the selected cycles for each case are 

illustrated in Fig. 8.6. The corresponding flexibility matrices have the condition 

numbers as listed in Table 8.4. 
 

  ____________________________________________________ 

  Type PL PN PDET 
  ____________________________________________________ 

  (a) 2.942885 3.07853E_14 7.828629E_10 

  (b) 3.770917 9.75069E_18  2.023529E_14 

  (c) 3.742143 1.04041E_14 1.356510E_9 

  ____________________________________________________ 

           Table 8.4  Improved condition numbers for Example 2. 
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Fig. 8.6   Selected cycle bases using Algorithm C. 

The considerable improvement is due to the formation of suboptimal cycle bases 

used in place of optimal cycle bases. It should be noted that these comparisons are 

made against the best existing algorithm, since sparsity itself has a great influence on 

the conditioning of flexibility matrices. 

 

8.6  OPTIMALLY CONDITIONED CUT SET BASES 

In order to optimize the conditioning of the stiffness matrices, special cut set bases 

must be used in the formation of kinematical bases. 

A cut set basis with the following properties is defined as an optimally conditioned 

cut set basis: 

(a) It is an optimal cut set basis; i.e. the number of nonzero entries of its cut set 

adjacency matrix and the corresponding number of nonzero entries of its stiffness 

matrix are minimum. 

(b) The members of lowest weight of S are included in the overlaps of the cut sets; 

i.e. the off diagonal terms of the corresponding stiffness matrix have the smallest 

possible magnitudes. 

A weighted graph may or may not have an optimally conditioned cut set basis. 

However, if such an basis does not exist or cannot be found, then a compromise 

should be found to satisfy the above two conditions; i.e. a basis which satisfies both  

conditions partially should be selected.  

8.6.1  MATHEMATICAL FORMULATION OF THE PROBLEM 
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The cardinality of a cut set basis for a connected graph is given by 

  (S) = N(S) _ 1. (8-16) 

The problem of finding an optimally conditioned cut set basis can then be stated as 

Select a cut set basis {C
1
*,C

2
* ,..., C(S)

* } such that
   

  
L

s
= Min L(C*i  C

i+1
* ),�

i=1

(S)-1

 
 

and  
W

s
 = Min W(C*i  C

i+1
* ),�

i=1

(S)-1

 (8-17)
 

where 
 C*i = C

j
*

j=1

i

, L denoting the length and W indicating the weight of the 

members of  C
*i  C

i+1
*

, respectively. 

Again we have a multi-objective optimization problem, which is not so easy to 

solve. Therefore we design an algorithm which is practical and satisfies partially the 

required conditions. 

 

8.7  SUBOPTIMALLY CONDITIONED CUT SET BASES 

A fundamental cut set basis of a graph can easily be generated using each branch of 

a spanning tree as the generator of a cut set. A more common cut set basis, employed 

in the displacement method of structural analysis, is a cocycle basis of S. For this 

basis each element simply isolates a node of S, except the ground node. 

Although a cocycle basis corresponds to a rather sparse cut set adjacency matrix, 

other cut set bases corresponding to more sparse cut set adjacency matrices, leading 

to more sparse stiffness matrices, can be generated. As an example, consider a frame 

model S as depicted in Fig. 8.7(a) for which a cocycle basis and a cut set basis are 

selected,  as illustrated in Figs 8.7(b) and (c),  respectively. The  patterns of the  

corresponding  cut 
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(a)                                      (b)                                        (c) 

Fig. 8.7  A planar frame S, a cocycle basis and a cut set basis of S. 

set adjacency matrices are shown in the next page using * for nonzero entries. 

     1 2 3 4 5 6    1 2 3 4 5 6 
   1 * * * *       1 * *         
   2 * *   *       2 * * *       

   D1
*
 = 3 *   * * * *   D2

*
= 3   * * *     

   4 * * * *   *    4     * * *   
   5     *   * *   5       * * * 
   6     * *  * *   6         * * 

    (D
1 
* ) = 24     (D

2
* ) = 16 

It will be realised that sparser stiffness matrices can be generated using suitable cut 

set bases than by employing the traditional cocycle basis, Ref. [95]. 

In order to keep the off-diagonal terms small, the members in the overlaps of the cut 

sets should be as flexible as possible; i.e. lower weight members should be included 

in the overlaps. In the following three algorithms are designed for the formation of 

suboptimal cut set bases of the graph model of the structures. 

8.7.1   ALGORITHMS 

The formation of a cocycle basis of a graph model S is simple and straight foreword. 

For this purpose the members incident with each free node (except the selected 

datum node) are taken as an element of the basis. Repeating this operation for all the 

free nodes, completes the process of the generation. 

ALGORITHM A 

Step 1. Generate a spanning tree of maximal weight . Order its members (branches) 

in ascending magnitude of weight. 

Step 2.  Use a branch of the least weight, form the selected tree and form the first 

fundamental cut set on this branch  
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Step 3.  Form the next fundamental cut set on the unused branch of the least weight. 

Step k.  Repeat Step 3 for the other unused branches until (S) = N(S) _ 1 

independent cut sets forming a basis is generated. 

ALGORITHM B 

Step 1.  Form a cocycle basis; denote the selected cocycles by  C*1. 

Step 2.  Take the first cocycle Ci
*
 of C*1 and combine with the remaining cocycles of 

C*1. For each cocycle 
C

j
*
 (j=2, ... ,(S)) satisfying the following condition, replace 

C
j
*
 with  

C
i
*  C

j
*
. 

Condition:  (L
s2

< L
s1

)  or  (L
s2

= L
s1

and  W
s2

< W
s1

),  

where L
s1

(W
s1

) and L
s2

(W
s2

) indicate the lengths (weights) before and after the 

application of the combining process. The new set of cocycles and/or cut sets are 

denoted by C*2. 

Step 3.  Take C2
*
 of C*2 and repeat a process similar to that of Step 2. 

Step. k.  Take C
k
*
 of C*k-1 and combine with the elements of C*k-1. The process 

terminates when k becomes equal to (S). 

ALGORITHM C 

This algorithm is the same as Algorithm B, with the difference that the 

corresponding condition is replaced by the following one: 

 Condition:  (W
s2

< W
s1

)  or  (W
s2

= W
s1

and  L
s2

< L
s1

). 

The selected bases are suboptimal and contain elements with lower weight members 

leading to kinematical bases corresponding to small off-diagonal terms for stiffness 

matrices. 

8.7.2  EXAMPLE 

A one bay four - storey planar truss is considered as shown in Fig. 8.8, with cross -

sections being designated by Ai. Typical member cross - sections are 
A

1
 = 20 cm2, A

2
 = 10 cm2, A

3
= 5 cm2, A

4
= 4 cm2, and  E = 2.1104kN/cm2. 
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(a) A planar truss.                   (b) The graph model S. 

Fig. 8.8  A planar truss and its graph model S. 

The patterns of the cut set bases adjacency matrices are illustrated in the following. 

    1 2 3 4 5 6 7 8     1 2 3 4 5 6 7 8 
  1 * * *             1 *       * * . . 
  2 * * * * *         2     * *     * * 
  3 * * * * *         3   * * *   * * * 
  4   * * * * *       4   * * *   * * * 
  5     * * * * *      5 *       * *     
  6       * * * * *   6 * *   * * *     
  7         * * * *   7     * *     * * 
  8           * * *   8     * *     * * 

  Pattern of D* by a cocycle basis. Pattern of D* by Algorithm A. 

 

    1 2 3 4 5 6 7 8     1 2 3 4 5 6 7 8 
  1 * *               1 * *         . . 
  2 * * *             2 * * *           
  3   * * *           3   * * *         
  4     * * *         4     * * *       
  5       * * *       5       * * *     
  6          * * *     6         * * * * 
  7           * * *    7           * * * 
  8              * *   8           * * * 
 

  Pattern of D* by Algorithm B. Pattern of D* by Algorithm C. 
 

The condition numbers of stiffness matrices, the sparsity, and the magnitudes of Ls 

and Ws for the selected cut set bases are illustrated in Table 8.5. 
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 _______________________________________________________________ 

 Algorithm PL PN PDET (D*) L
s W

s 
 _______________________________________________________________ 

 Coc. basis 2.720131 2.296570E_7 9.284245E_6 34 13 75936.5 

  A 2.145762 1.093639E_5 1.134908E_3  12 48048.7 

  B 2.502612 8.509724E_4 9.406178E_3  7 46200.0 

  C 2.245613 2.702627E_4 3.457425E_3  8 36400.0 
 _______________________________________________________________ 

Table 8.5 Comparison of the condition numbers and sparsities. 

The execution time for the formation of the selected cut set bases (TC) and the 

corresponding stiffness matrices (TK) are are presented in Table 8.6. 

 
  _______________________________________________ 
 
  Time Cocycle basis A B C  
  _______________________________________________ 
 

  T
C
 0.00 0.88 0.76 o.88  

  T
K
 0.43 0.65 0.48 0.60 

  _______________________________________________ 

 

Table 8.6  Comparison of the computational time. 

 

Although the sparsity of stiffness matrices K can be improved by the formation of 

special cut set bases in place of cocycle bases, the improvements, in general, are not 

significant. On the other hand the conditioning of K can be improved by employing 

appropriate cut set bases. Algorithm B improves the conditioning of the stiffness 

matrices, maintaining the sparsity of the stiffness matrices. This improvement is 

more significant for Algorithms A and C, although the sparsity of K is not 

maintained. 

 

EXERCISES 
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8.1 For the grid shown in the following, the relative stiffnesses are encircled. Find 

a suboptimally conditioned cycle basis of this model. 

 

 

 

 

 

 

8.2 Find the condition numbers PL, PDET and PN of the stiffness matrix of the 

following planar frame. 

 

 

 

 

 

 

8.3 Repeat Exercise 8.2 for the flexibility matrix of the same structure. 

8.4 Study the effect of bandwidth reduction on the stiffness matrices of structures 

and find out whether this effect is significant. Illustrate this fact with a simple matrix 

chosen arbitrarily. 

8.5 Use Algorithms A,B and C to find suboptimally conditioned cycle bases for 

the following weighted graphs. The numbers 1 and 2 show the member types as 

given in Section 8.5.4. 
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(a)                                                          (b) 

8.6 Write a computer program to calculate the largest and the smallest eigenvalues 

for adjacency matrices of graphs. 


