
CHAPTER 7 

Ordering for Bandwidth, Profile 

and Frontwidth Optimisation 
 

7.1   INTRODUCTION  

The analysis of many problems in engineering mechanics involves the solution of 
a set of linear equations of the form, 

 Ax = b, (7-1) 

where A is a symmetric, positive definite and usually very sparse matrix. For large 
structures encountered in practice, 30-50% of the computer execution time may be 
devoted to solving these equations. This figure may rise to about 80% in non-
linear, dynamic or structural optimisation problems. 

Different methods can be used for the solution of the system of equations, of 
which Gaussian elimination is the most popular among structural analysts, since it 
is simple and has produced some very satisfactory error bounds. 

In the forward course of elimination, new non-zero entries may be created, but the 
back substitution does not lead to any new non-zero elements. It is beneficial to 
minimize the total number of such non-zero elements created during the forward 
course of the Gaussian elimination in order to reduce the round-off errors and the 
computer storage. Matrix A can be transformed by means of row and column 
operations to a form which leads to the creation of a minimum number of non-zero 
entries during the forward course of the elimination. This is equivalent to the "a 
priori" determination of permutation matrices P and Q, such that: 

 PAQ = G. (7-2) 
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When A is symmetric and positive definite, it is advantageous to have G also 
symmetric so that only the non-zero elements on and above the diagonal of G need 
to be stored, and only about half as many arithmetic operations are needed in the 
elimination. The diagonal elements of A and G are the same, only in different 
positions. In order to preserve symmetry, P is taken as Q so that Eq. (7-2) 
becomes: 

 .t GAQQ =  (7-3) 

Some of the desirable forms of G are shown in Figure 7.1, consisting of the 
banded form, variable banded form, doubly bordered block diagonal form and 
doubly bordered banded form: 

 
 (a) Banded form.                            (b) Variable banded form. 

 
(c) Doubly bordered block diagonal form.(d) Doubly bordered banded form. 

Fig. 7.1   Different forms for matrix G. 

For transforming a symmetric matrix A into the above forms, various methods are 
available, some of which will be described in this chapter. However, due to the 
simplicity of the banded form, most of the material presented will be confined to 
optimising the bandwidth of the structural matrices, and other forms will be 
introduced briefly. 

 

7.2   BANDWIDTH OPTIMISATION 

In the Gaussian elimination method, the time required to solve the resulting 
equations by the banded matrix technique is directly proportional to the square of 



CHAPTER 7 Ordering for Bandwidth, Profile and Frontwidth …                     221 

 

 

221

the bandwidth of A. As mentioned before, the solution of these equations forms a 
large percentage of the total computational effort needed for the structural 
analysis. Therefore it is not surprising that a lot of attention is being paid to the 
optimisation of the bandwidth of these sparse matrices. A suitable ordering of the 
elements of a kinematical basis for a structure reduces the bandwidth of A, hence 
decreasing the solution time, storage and round-off errors. Similarly, ordering the 
elements of a statical basis results in the reduction of the bandwidth of the 
corresponding flexibility matrix of the structure. 

Iterative methods using different criteria for the control of the process of 
interchanging rows and columns of A are described by Akyuz and Utka [2], 
Alway and Martin [3], Rosen [207] and Grooms [66]. For these methods, in 
general, the required storage and CPU time can be high, making them 
uneconomical. 

The first direct method for bandwidth reduction was recognized by Harary [70] in 
1967, who posed the following question: 
 

For a graph S with N(S) nodes, how can labels 1,2, ... ,N(S) be 
assigned to nodes in order to minimize the maximum absolute value 
of the difference between the labels of all pairs of adjacent nodes? 

For a graph labelled in such an optimum manner, the corresponding adjacency 
matrix will have unit entries concentrated as closely as possible to its main 
diagonal. 

In structural engineering, Cuthill and McKee [34] developed the first graph-
theoretical approach for reducing the bandwidth of stiffness matrices. In their 
work, a level structure is used which is called a "spanning tree" of a structure. The 
author´s interest in bandwidth reduction was initially motivated by his interest in 
generating and ordering the elements of cycle bases and generalized cycle bases of 
a graph, as defined in Chapter 6, in order to reduce the bandwidth of the flexibility 
matrices, Ref. [89]. For this purpose, a shortest route tree (SRT) has been used. 
The application of this approach has been extended to the elements of a 
kinematical basis (cutset basis), in order to reduce the bandwidth of stiffness 
matrices. Subsequently, it has been noticed that there is a close relation between 
Cuthill-McKee´s level structure and the author´s SRT. However, there is a 
difference between these trees in that an SRT contains additional information 
about the connectivity properties of the corresponding structure. 

Further improvements have been achieved by employing special types of SRTs 
such as the longest and narrowest ones, Ref. [100]. Generation of a suitable SRT 
depends on an appropriate choice of starting node. Kaveh [89] used an end node 
of an arbitrary SRT, which was chosen from its last contour (level) having the 
least valency. Gibbs et al. [57] employed a similar node and called it a pseudo-
peripheral node. Cheng [25] used an algebraic approach to select a single node or 
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a set of nodes as the root of an SRT. Kaveh employed two simultaneous SRTs for 
selecting a pseudo-peripheral node. A comparison of six different algorithms was 
made in Ref. [103]. Algebraic graph theory has also been used for finding a 
starting node, Kaveh [101] Grimes et al. [65], Kaveh and Rahimi Bondarabady 
[121,122,127,128]. 

Extensions and applications of the nodal numbering algorithms to element 
ordering for bandwidth, profile and frontwidth optimisations are due to Kaveh 
[101,102], Akhras and Dhatl [1], Everstine [44], Razzaque [201], Pina [192], 
Fenves and Law [49], Sloan and Randolph [219], Sloan [220], Burgess and Lai 
[17], and excellent books on these topics are those of Duff et al. [39] and 
Pissanetsky [193]. 

 

7.3   PRELIMINARIES 

A matrix A is called banded, when all its non-zero entries are confined within a 
band formed by diagonals parallel to the main diagonal. Thus Aij = 0 when  |i − j| 
> b and Ak,k-b ≠ 0 or Ak,k+b ≠ 0 for at least one value of k. b is the half-bandwidth 
and 2b+1 is known as the bandwidth of A. As an example, for 
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the bandwidth of A is 2b+1=2×2+1=5. 

A banded matrix can be stored in different ways. The diagonal storage of a 
symmetric banded n×n matrix A is an n×(b+1) matrix AN. The main diagonals are 
stored in the last column, and lower co-diagonals are stored down-justified in the 
remaining columns. As an example, AN for the above matrix is: 
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When A is a sparse matrix, this storage scheme is very convenient, since it 
provides direct access, in the sense that there is a simple one-to-one 
correspondence between the position of an entry in the matrix A(i,j) and its 
position in AN(i,j − i+b+1). 

Obviously, the bandwidth depends on the order in which the rows and columns of 
A are arranged. This is why iterative techniques seek a permutation of the rows 
and a permutation of columns to make the resulting bandwidth small. For 
symmetric matrices, identical permutations are needed for both the rows and the 
columns. When a system of linear equations has a banded matrix of coefficients 
and the system is solved by the Gaussian elimination, with pivots being taken from 
the diagonals, all the operations are confined to the band and no new non-zero 
entries are generated outside the band. Therefore, the Gaussian elimination can be 
carried out in place, since a memory location is already reserved for any new non-
zero that might be introduced within the band. 

When a banded matrix of high order has a wide band and a large number of zeros 
inside it, the diagonal storage may become wasteful. Then an envelope (variable 
band) scheme of Jennings [85], the so-called skyline (Felippa [50]), may be used. 
For each row i of a symmetric matrix A, define  

 bi = i − jmin(i), (7-6) 

where jmin (i) is the minimum column index in row i for which Aij ≠ 0. Therefore, 
the first non-zero of row i lies bi positions to the left of the diagonal, and b is 
defined as:  

 b = max (bi). (7-7) 

The envelope of A is the set of elements Aij such that 0 < i − j ≤ b. For a certain 
row i, all elements with column indices in the range jmin(i) to i − 1 belong to the 
envelope, a total of bi elements. Diagonal elements do not belong to the envelope. 
The profile of A is the number of elements in the envelope, i.e. 

 ∑=
i

i.b)( ofilePr A  (7-8) 

In Jennings´s storage scheme, all elements which belong to the envelope are stored 
row by row, including zeros, in a one-dimensional array, say AN. Diagonal 
elements are stored at the end of each row. The length of AN is equal to Profile 
(A) + n. An array of pointers IN, the entries of which are pointers to the locations 
of the diagonal elements in AN, is also necessary. Thus, the elements of row i, 
when i > 1, are in positions IN(i − 1)+1 to IN(i). The only element of row 1 is A11, 
stored in AN(1). The elements have consecutive, easily calculable column indices. 
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For example, the matrix of the previous example, has a profile equal to 4, and its 
envelope storage is: 

 Position =   1 2 3 4 5 6 7 8 9 

 AN =  [1 6 2 7 3 8 9 4 5]        (7-9) 

  IN =  [1 3 5 8 9] 

A variant of Jennings´s scheme is obtained when the transpose of the lower 
envelope is stored. In this case elements are stored column-wise, and since the 
columns of the matrix retain their length, the scheme is often termed skyline 
storage. The profile of a matrix also changes if the rows and columns are 
permuted. 

Another useful concept used in the design of storage schemes for symmetric 
matrices is wavefront or frontwidth. This method has application in the finite 
element method when a frontal solution is employed, Irons [84,121,149,158,215]. 

With reference to equation (7-1), column j is said to be active at stage i if j ≥ i and 
there is a non-zero entry in column j with a row index, k, such that k ≤ i. Letting fi 
denote the number of columns that are active at stage i, the maximum frontwidth of 
A is given by: 

 Fmax = max {fi}. (7-10) 

                                                               1 ≤ i ≤n 

The root-mean-squared (r.m.s.) wavefront is defined as:  

 ∑
=

=
n

1i

2
in

1 2
1

)f(F~  (7-11) 

Assuming that n and the average value of fi are reasonably large, it can be shown 
that a complete profile or front factorization requires approximately O(n~F2 ) 
operations. 

 

7.4 PATTERN EQUIVALENCE OF STIFFNESS 

 AND CUTSET ADJACENCY MATRICES 

In previous chapters, it has been shown that the stiffness matrix K of a structure is 
pattern equivalent to the cutset basis adjacency matrix N = LLt, where L is the 
cutset basis incidence matrix of the structural model S. Similarly, the flexibility 
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matrix G is pattern equivalent to the cycle basis adjacency matrix D = CCt, where 
C is the cycle basis incidence matrix of S. 

Reducing the bandwidths of N and D directly influences those of K and G, 
respectively. Notice that the dimensions of N and D, for general space structures, 
are six-fold smaller than those of K and G, and therefore more simple to optimise. 

For stiffness analysis there exists a special cutset basis whose elements correspond 
to stars of its nodes except for the ground node (cocycle basis). The adjacency 
matrix of such a basis naturally is the same as that of the node adjacency matrix of 
S with the row and column corresponding the datum node being omitted. In this 
chapter such a special cutset basis will be considered, and the nodes of S will be 
ordered such that the bandwidth of its node adjacency matrix is reduced to the 
smallest possible amount. 

Let A be the adjacency matrix of a graph S. Let i and j be the nodal numbers of 
member k, and let jik −=α . Then the bandwidth of A can be defined as, 

 b(A) = 2Max{ αk: k=1,2, ...,M(S)} + 1, (7-12) 

where M(S) is the number of members of S. In order to minimize the bandwidth of 
A, the value of b(A) should be minimized.  

Papademetrious [185] has shown that the bandwidth minimization problem is an 
NP-complete problem. Therefore, any approach to it is of interest primarily 
because of its heuristic value. 

 

7.5   A SHORTEST ROUTE TREE AND ITS PROPERTIES 

A shortest route tree rooted at a node, called the starting node (root) of the tree, 
has the following properties: 

The path from any node to the root through the tree is a shortest path. An 
algorithm for generating an SRT has already been described in Chapter 1 and 
therefore only its properties relevant to nodal number are discussed here. 

An SRT decomposes (partitions) the node set of S into subsets according to their 
distance from the root. Each subset is called a contour (level) of the SRT, denoted 
by Ci. The contours of an SRT have the following properties: 
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Adj (Ci) ⊆ Ci-1 ∪ Ci+1    1 < i < m 

Adj (C1) ⊆ C2 

Adj (Cm) ⊆ Cm-1. 

(7-13) 

The number of nodes in each contour is called the width of that contour, and the 
largest width of the contours of an SRT is called the width of the SRT rooted at the 
starting node ni. This number is known as the width number of ni. The number of 
contours of an SRT (except the starting node contour) is the height of the tree. The 
longest SRT is the one with maximal height and the narrowest SRT is the one 
with minimal width. 

As an example, an SRT of S as shown in Figure 7.2(a), rooted at O, has the 
following identities: 

W(C1) = 1, W(C2) = 2, W(C3) = 5, W(C4) = 7, W(C5) = 9, and W(C6) = 1, leading 
to Width (SRT) = 9 and Length (SRT) = 5.  
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(a) An SRT rooted at O.                (b) An SRT rooted at O′ . 

Fig. 7.2   A graph S and two of its SRTs. 

The same graph model and an SRT rooted at O′ , as shown in Figure 7.2(b), leads 
to Width (SRT) = 16 and Length (SRT) = 3. 

From this simple example one can realize the importance of selecting an 
appropriate starting node. This will be discussed in some detail in subsequent 
sections. 
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7.6   NODAL ORDERING FOR BANDWIDTH REDUCTION 

A four-step algorithm is used for nodal ordering of structural models leading to 
banded stiffness matrices, in which the nodes of their models S have been ordered 
by: 

Step 1: Finding a suitable starting node. 

Step 2: Decomposing the node set of S into ordered subsets (contours). 

Step 3: Selecting a connected path (transversal) containing one representative 
node from each contour. 

Step 4: Ordering the nodes within each contour, to obtain the final nodal 
numbering of S. 

All the above steps require the use of an SRT algorithm of Chapter 6. Therefore, a 
nodal ordering process may be considered as a multiply applied SRT algorithm. 

The node set of S can be decomposed into ordered subsets by means of a breadth-
first-search algorithm. The quality of the results depends upon the choice of an 
appropriate starting node, as the root of this tree. The results corresponding to the 
ordering within each contour, however, also depend upon the use of a suitable 
transversal containing one representative node from each contour. 

Methods for finding suitable starting nodes have been developed by Cheng [25], 
Kaveh [89,103], Gibbs et al. [57], and Grimes et al. [65]. In the following, various 
topological and algebraic graph-theoretical methods are presented for finding good 
starting nodes and selecting suitable transversals. 

7.6.1   A GOOD STARTING NODE 

The algorithms described in this section are in two groups. The first group uses 
topological graph theory (TGT), and the second group employs algebraic graph 
theory (AGT). 

Some Concepts of Algebraic Graph Theory:  The standard definitions from 
TGT were described in Chapter 1, and only new terms and those of AGT are given 
here. 

The distance d(ni,nj) between two nodes ni and nj is defined to be the length of the 
shortest path between these nodes. The eccentricity of a node ni is defined as: 

 e(ni) = Max d(ni,nj)  for  j=1,...,N(S). (7-14) 
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The diameter of S is defined as:  

 δ(S) = Max e(ni)  for  i=1,...,N(S). (7-15) 

As an example, the eccentricity of n2 in Figure 7.3 is e(n2) = 3, and the diameter of 
S is δ(S) = 4. 

n2
 

Fig. 7.3   A graph S.  

A node ni of S is called peripheral, if its eccentricity is the same as the diameter of 
S, i.e. δ(S) = e(ni). If the eccentricity is close to the diameter, then ni is called a 
pseudo-peripheral node or a good starting node.  

Consider the node adjacency matrix A of S. Let 

 Q = A + I, (7-16) 

where I is an N(S)×N(S) identity matrix. The eigenvalues of Q are one bigger than 
those of A, and the eigenvectors of Q are exactly the same as those of A. Matrix Q 
is real and symmetric, and it can easily be shown that all the entries of Qk are 
positive; thus it is primitive and, according to the Perron-Frobenius theorem from 
matrix algebra: 

i) λ1 is real and positive, and a simple root of the characteristic equation; 

ii) λ1 > |λ| for any eigenvalue λ ≠ λ1; 

iii) λ1 has a unique eigenvector W1 which may be taken to have all positive 
entries. 

As Wi is the eigenvector corresponding to λi, QWi = λiWi for i=1, ... ,N(S). 
Multiplying the two sides with Q, one obtains i

2
iiii WWW λ=λ= QQQ . Repeating 

this process results in i
k
ii

k WW λ=Q . Now consider any vector x not orthogonal to 
W1, as: 
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 x = α1W1 + α2W2 + ... +αN(S)WN(S)        α1 ≠ 0. (7-17) 

Multiplying the two sides with Qk, and using i
k
ii

k WW λ=Q   for i=1, ... ,N(S) 
leads to: 

 Qkx = k
1λ α1W1 + k

2λ α2W2 + ... + k
)S(Nλ αN(S) WN(S), (7-18) 

and, as k→∞ , we have, 

  Qkx/ k
1λ = α1W1 + (λ2/λ1) kα2W2 + ... +(λN(S)/λ1) kαN(S) WN(S) →α1W1,    (7-19) 

since λ1 is the eigenvalue of strictly largest modulus, and (λi/λ1) is less than unity 
and approaches to zero when k →∞ . In other words, the ratios of the components 
of Qkx approach the ratios of the components of W1 as k increases. 

Let v = {1,1,...,1}t, then the ith component of Qkv is the number of walks of length 
k beginning at an arbitrary node of S and ending at ni. If ni is a good starting node 
(peripheral node), this number will be smaller. Thus for k→∞ ,  one should obtain 
some average number, defined as the accessibility index by Gould [64], which 
indicates how many walks go on average through a node. With a suitable 
normalization, Qkv converges to the largest eigenvector W1 of Q, Straffing [226]. 

The following algorithms are designed to obtain a good starting node of a graph: 
 

Algorithm A (a TGT approach) 

Step 1: Construct an SRT on each node of S and select the narrowest SRT. In this 
algorithm the width numbers of all nodes are calculated. These numbers may 
further be used in the process of ordering. 

Obviously, such an approach can be expensive for large structures, which defeats 
its application. 
 

Algorithm B (a TGT approach) 

Step 1:  Start with a node of the least valency and form an SRT. 

Step 2:  Record all the nodes of the last contour of the selected SRT. 
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Step 3:  Form SRTs rooted at each of the recorded nodes and choose the one 
which corresponds to the narrowest SRT. The process of constructing an SRT is 
terminated as soon as the width of one of its contours exceeds the width of the 
previously selected SRT. 

Algorithm C (a TGT approach) 

Step 1: Start from an arbitrary node of S. Construct an SRT on this node and 
take a node of least valency from its last contour. 

Step 2: Form a new SRT from the selected node, and then repeat Steps 2 and 3 
of Algorithm B and choose the starting node corresponding to the narrowest SRT. 

Algorithm D (a TGT approach) 

Step 1: Form an SRT on each node of S and select the narrowest SRT. Unlike 
Algorithm A, the construction of an SRT is terminated as soon as its width 
exceeds the width of the previously selected SRT. 

This algorithm is more economical than Algorithm A; however, it does not 
provide the information that Algorithm A reveals, for subsequent use. 

Algorithm E (a TGT approach) 

Step 1: Start with an arbitrary node, form an SRT on this node and take a node 
ni of least valency from its last contour. 

Step 2: Generate an SRT on ni and find all nodes contained in its even, first and 
last contours. 

Step 3: Generate an SRT on each node of these contours, and find the narrowest 
one. The process of formation of an SRT is terminated as soon as the width of one 
of its contours exceeds the width of the previously selected SRT. Denote the 
selected node by nj. 

Step 4: Check adjacent nodes to nj for possible reduction in width, to decide the 
final starting node. 

Algorithm F (a TGT approach) 

Step 1: From an arbitrary node generate an SRT, and from its last contour select 
a node X1 of minimal valency. Observe the width of the selected SRT. 

Step 2: Generate an SRT from X1 and select X2 of the least valency from its last 
contour, and observe the width. 
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Step 3: Generate two SRTs simultaneously rooted at X1 and X2 and find the 
node X3 which is the last node of S included in one of the SR subtrees. Once X3 is 
found, terminate the process of forming SRTs. Generate an SRT from X3 and 
observe its width. X1 and X2 are called the generators of X3. 

Step 4: Repeat the process of Step 3, using the pairs (X1,X3) and (X2,X3) as the 
generators to find X4 and X5, respectively. Construct the corresponding SRTs and 
observe their widths.  

Step 5: Repeat the process of Step 3 for Xi (i = 3, 4, ...) together with the 
corresponding generator, until no further improvement in width is observed. The 
narrowest SRT should be selected for nodal decomposition of S. 

An example of the application of this algorithm is depicted in Figure 7.4, where a 
cross-shaped grid S is considered. Starting from an arbitrary node "O", an SRT is 
generated and X1 is obtained from its last contour. Generating a new SRT from X1, 
node X2 is chosen from its last contour. X3 is the result of generating two 
simultaneous SRTs from X1 and X2. Using (X1,X3) and (X2,X3), nodes X4 and X5 
are obtained, respectively. The width of the selected SRTs rooted at X1,X2,X3,X4 
and X5 are 8,8,8,11, and 10, respectively. Therefore the process is terminated and 
X3 is taken as a good starting node of S.  

O

X

X

X X

X

1

2

3

4

5

 

Fig. 7.4   A cross-shaped grid and the selected Xi (i=1,...,5) by Algorithm F.  
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Algorithm G (an AGT approach) 

Step 1: Calculate the dominant eigenvector W1 = {W1,W2,...,WN(S)}t of matrix 
Q. 

Step 2: Find Min Wi in W1. The node corresponding to this component is taken 
as a good starting node of S. 

For calculating the dominant eigenvector W1 of Q, an iterative method is used, 
which starts with v = {1,1, ...,1}t and calculates Qv. This vector is then normalized 
and multiplied by Q. This process is repeated until the difference between two 
consecutive eigenvalues, obtained from Qv = λv, is reduced to a small value 
which, for example, can be taken as 10−3. 

The author has compared the efficiency of the above algorithms through some 
randomly generated graphs. A comparison of the time and bandwidth for the 
generated examples may be found in Kaveh [103]. 
 

7.6.2  PRIMARY NODAL DECOMPOSITION 

Once a good starting node is selected, an SRT is constructed and its contours 
{C1,C2,...,Cm} are obtained. These subsets are now ordered according to their 
distances from the selected starting node. Obviously, many SRTs can be 
constructed on a node. Although all lead to the same nodal decompositions, 
different transversals will be obtained for different SRTs. Thus, in the generation 
process, the nodes of each contour Ci are considered in ascending order of their 
valencies (or entries in eigenvector W1) for selecting the nodes in Ci+1, in order to 
provide the conditions for the possibility of generating a minimal (or optimal) 
transversal as defined in the next section. Finding an optimal transversal before an 
SRT is fixed seems to be a time-consuming problem. However, for most of the 
models encountered in practice, optimal transversal is in between minimal ones. In 
the following, two algorithms are given for selecting a suboptimal transversal of 
an SRT. 

7.6.3  TRANSVERSAL  P  OF AN SRT 

A transversal of an SRT, is defined as a connected path P containing one distinct 
node Ni from each contour Ci of the SRT. A minimal transversal is the one for 

which ∑
=

m

1i
i )Ndeg(  is minimum. An optimal transversal is the one leading to the 

best nodal numbering, i.e. a numbering corresponding to smallest bandwidth for 
the selected decomposition. The weight of a node is defined as its degree or its 



CHAPTER 7 Ordering for Bandwidth, Profile and Frontwidth …                     233 

 

 

233

value Wi in W1, depending upon the use of a TGT approach or an AGT method, 
respectively. 

Algorithm AA (a TGT approach) 

Step 1: Take a node Nm of minimal weight from the last contour Cm of the 
selected SRT. 

Step 2: Find Nm-1 from C m-1  which is connected to Nm by a branch of the SRT. 

Step 3: Repeat the process of Step 2, selecting nodes Nm-2, Nm-3, ... , N1, as the 
representative nodes of the contours Cm-2 , Cm-3 , ... ,C1, respectively. 

The above algorithm is a backtracking process from a node of minimal weight in 
the last contour Cm, and selects a transversal P = {N1, N2, ... ,Nm} which can now 
be used for ordering the nodes of the contours of the corresponding SRT. 

ALGORITHM BB (an AGT approach) 

Let C1,C2,...,Cm be the selected contours of the SRT, and correspondingly put 
these subsets in W1 into a similar order, i.e. 

 W1 = {W(C1),W(C2), ...,W(Cm)}, (7-20) 

where W(Ci) contains the entries of W1 corresponding to the nodes of Ci. Now the 
algorithm can be described as follows: 

Step 1: Label the root as N1 and assign Wi of this node as its new weight 
denoted by iW . 

Step 2: Calculate the new weight iW  of each node of C2 by adding the Wi´s 

from W(C2) to 1W . 

Step 3: Repeat the process of Step 2, calculating iW  for each node of C3,C4, ... 
,Cm. 

Step 4: Take a node Nm of minimal weight from the last contour Cm of the 
selected SRT. 

Step 5: Find Nm-1 from Cm-1, which is connected to Nm by a branch of the SRT. 

Step 6: Repeat the process of Step 5, selecting Nm-2,Nm-3, ... ,N1 as the 
representative nodes of the contours Cm-2,Cm-3, ... ,C1. 
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P = {N1,N2,...,Nm} forms a suboptimal transversal of the selected SRT. 

In general, the results of the Algorithm BB have been better than those of 
Algorithm AA, at the expense of some additional computer time. As an example, 
for the grid model of Figure 7.5, a suboptimal transversal of the SRT rooted at X3 
is shown in bold lines. 

7.6.4  NODAL ORDERING 

Step 1: Number N1 as "1". 

Step 2: N2 is given number "2" and an SR subtree is generated from N2, 
numbering the nodes of C2 in the order of their occurrence in this SR subtree. 

Step 3: The process of Step 2 is repeated for numbering the nodes of C3, C4, ... , 
Cm, sequentially using N3, N4, ... ,Nm as the starting nodes of SR subtrees, until all 
the nodes of S are numbered. 

Now the numbering can be reversed, in a way similar to that of the Reverse 
Cuthill-McKee algorithm, for possible reduction of fill-ins in the process of 
Gaussian elimination, which will be discussed in Section 7.9. 

7.6.5  EXAMPLES 

The following two simple examples are chosen to illustrate the steps of the 
presented approaches, but the applications are by no means limited to such simple 
cases. 

Example 1:  Let S be the graph model of a truss structure, as shown in Figure 
7.5(a). Using a TGT algorithm, a starting node A is found, and the corresponding 
SRTs are depicted in Figure 7.5(b). A transversal is selected as shown in bold 
lines, Figure 7.5(c). Then nodes are numbered contour by contour, employing the 
representative nodes as the starting nodes of SR subtrees, Figure 7.5(d). 
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                 (a) Initial numbering of S.                  (b) The selected SRT. 
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(c) The selected transversal P.               (d) Final nodal numbering of S. 

Fig. 7.5   Graph model S of Example 1. 

Example 2:  S is the model of a grid with uniform valency distribution, as shown 
in Figure 7.6(a). Using algorithm G, the following dominant eigenvector is 
obtained for matrix Q of S, in which for simplicity only four digits are provided: 

W1 = {0.3344, 0.5298, 0.6161, 0.5951, 0.4791, 0.3011, 0.1180, 0.3972, 0.7432, 
0.9540, 1.0000, 0.8786, 0.6183, 0.2875, 0.2875, 0.6183, 0.8786, 1.000, 0.9540, 
0.7432, 0.3972, 0.1180, 0.3011, 0.4791, 0.5951, 0.6160, 0.5298, 0.3344}t. 

Thus node "7" is selected as a good starting node. An SRT is generated from this 
node and, using Algorithm BB, a transversal P = {7,14,21,28,27,26,25,24,23,22} 
is selected, which is shown in bold lines in Figure 7.6(a). Final nodal numbering is 
illustrated in Figure 7.6(b). 
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(a)  Initial numbering and the selected transversal.     (b)  Final numbering. 

Fig. 7.6   The graph model S of Example 2. 
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7.7 A CONNECTIVITY COORDINATE 

 SYSTEM FOR NODAL ORDERING 

In order to cast the concepts developed for nodal ordering in a mathematical form, 
a connectivity coordinate system is defined for nodal numbering of S, Kaveh 
[106]. Separate study of planar and space graphs results in clarification of further 
interesting points about nodal numbering of space structures, as described in the 
following. 

7.7.1  A CONNECTIVITY COORDINATE SYSTEM FOR PLANAR GRAPHS 

Let S be a connected planar graph. Select a good starting node "O" of S as the root 
of an SRT (analogous to the centre of a coordinate system). Generate an SRT of S 
rooted at O and find a suboptimal transversal P of the SRT (analogous to the x-
axis). Now any node ni of S can be associated with two integers, namely (ri,di), 
where ri is the shortest distance of ni from O (distance of the contour Ci from O to 
which ni belongs), and di is the shortest distance of ni from the representative node 
Ni ∈ Ci (analogous to (xi,yi) in a Cartesian coordinate system). 

An order can now be defined for the nodes of S as, 

 ni (ri,di) < nj(rj,dj),                        (7-21) 
if (a) ri < rj; 

 (b) ri = rj and di < dj; 

 (c) ri = rj , di = dj and ni is in a shorter distance from the nearest ordered 
node than nj; 

 (d) otherwise ni and nj are arbitrarily ordered. 

As an example, a grid structure shown in Figure 7.7(a) is considered. 

1 2 3 4 5 6 7
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(a) Primary nodal ordering and the selected transversal. 
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36(11,0)
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32(9,2) 29(8,4) 25(7,6) 20(6,8) 14(5,8) 10(4,8)

35(10,2) 33(9,4) 30(8,6) 26(7,8) 15(5,10)21(6,10)

 
 (b) The connectivity coordinate system and final nodal ordering. 

Fig. 7.7   A grid structural model and its connectivity coordinate system. 

Using the dominant eigenvector for matrix Q of S, node "36" is selected as a good 
starting node and P = {36,35,34,33,32,31,30,26,22,15,8,1} is chosen as a 
suboptimal transversal of the selected SRT. The connectivity coordinates of the 
nodes are shown in Figure 7.7(b), according to which the nodes of S are ordered. 

7.7.2  A CONNECTIVITY COORDINATE SYSTEM FOR SPACE GRAPHS 

The connectivity coordinate system defined in the previous section can be 
generalized to space graphs. This requires further refinement of the nodal ordering 
algorithm and leads to better results at the expense of additional comparisons. 

Generate an SRT of S from the selected starting node "O" and find a suboptimal 
transversal P of the SRT rooted at O. Denote the contours of this tree by C1,C2, ... 
,Cm, and their representative by nodes N1,N2, ... ,Nm, respectively. Generate one 
SR subtree rooted at Ni (i=1, ..., m), spanning the nodes of Ci. Select 
subtransversals Pm,Pm-1, ... ,P1 as follows: 

Construct a transversal of the SR subtree rooted at Nm spanning the nodes of Cm, 
and denote it by Pm. This can be achieved by a backtracking approach using the 
SR subtree generated from Nm. Obviously, a transversal Pm may be a disconnected 
path in Cm (connected in S), and will be referred to as a subtransversal. Then 
select Pm-1 of Cm-1, which has its nodes adjacent to, or in a small distance from the 
nodes of Pm. Repeat this process until subtransversals for all the contours are 
obtained. Now, to every node of S three integers can be assigned, denoted by ni 
(ri,di,gi), where ri is the distance of ni from O, di is the distance of ni from Ni, and gi 
is the distance of the node ni from subtransversal Pi. An order is defined for the 
nodes of S as, 

 ni (ri,di,gi) < nj(rj,dj,gj), (7-22) 
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if (a) ri < rj; 

 (b) ri = rj and di < dj; 

 (c) ri = rj, di = dj and gi < gj; 

 (d) ri = rj , di = dj, gi = gj and ni is at a nearer distance than nj to an 
already numbered node; 

 (e) otherwise ni and nj are arbitrarily ordered. 

As an example, consider a simple space frame as shown in Figure 7.8(a). The 
ground node is selected as a starting node, and the transversal P is obtained for the 
corresponding SRT, as shown in bold lines, Figure 7.8(b). The contours are simply 
the nodes of different storeys of the structure, for each of which subtransversals 
are selected as depicted by the dashed lines. The final ordering is given in Figure 
7.8(c). 
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                   (a)                                (b)                                   (c) 

Fig. 7.8   A space structure and its connectivity coordinate system. 

 

7.8   NODAL NUMBERING FOR PROFILE REDUCTION 

Nodal numbering algorithms can also be applied to profile reduction. As 
mentioned before, after nodal numbering for bandwidth reduction, by reversing 
the ordering, a numbering corresponding to a much smaller profile can be found. 
This has been found by George [56] and proved by Liu and Sherman [163]. The 
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method is known as the Reverse Cuthill-McKee algorithm. For the Cuthill-McKee 
type of ordering, the bandwidth remains unchanged when the order is reversed; 
however, the profile can never increase. 

As an example, consider a nodal numbering for a graph as shown in Figure 7.9(a) 
with corresponding adjacency matrix A, in Figure 7.9(b). Reversing the nodal 
numbers as in Figure 7.9(c), leads to a matrix A′  as depicted in Figure 7.9(d), 
with a reduction of the profile from 15 to 13.  
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(a) A nodal numbering.                                    (b) Matrix A. 
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        (c) Reverse of the nodal numbering of (a).                 (d) Matrix A′ . 

Fig. 7.9   A Reverse Cuthill-McKee for nodal numbering. 

Another important algorithm for profile reduction is that of King [138], which 
operates as follows: 

Take a node of minimum valency and number it "1". The set of nodes is now 
divided into three subsets, A, B and C. The subset A consists of nodes already 
numbered. The subset B is defined as B = Adj (A); i.e. it consists of all nodes 
adjacent to any node of A. C contains the remaining nodes. Then, at each step 
number the node of subset B which causes the smallest number of nodes of subset 
C to be transferred to subset B, and redefine A, B and C, accordingly. 
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Example: Consider a graph S with original nodal numbering as in Figure 7.10(a).  

Take node "5" as a starting node and number it as "1". Then:  

A = {5},  B = {1,8}  and C = {the remaining nodes}. 

7

1

6

8

2

5

4

3

3

4

5

2

8

6

1

7

 

(a)                                                     (b) 

Fig. 7.10   An example of numbering by King´s algorithm. 

At this stage, 1 and 8 are the next candidates. If 1 is taken to A, then 2 will come 
to B, and for 8, node 7 will join B. Therefore, arbitrarily, 1 is taken to A and 
numbered as "2". Now we have: 

A = {5,1}, B = {8,2} and C = {the remaining nodes}. 

From new candidates 8 and 2, naturally 8 will be selected because it brings only 7 
to B, while 2 brings 3 and 6. Therefore 8 is numbered as "3". This process is 
continued until the nodal numbering of Figure 7.10(b) is obtained, which 
corresponds to a profile equal to 14. 

 

7.9 GRAPH-THEORETICAL INTERPRETATION OF  

 GAUSSIAN ELIMINATION 

Let A be a symmetric sparse matrix of order N and let S be the corresponding 
graph. Suppose that Gaussian elimination by columns is performed on A until the 
factorization A = UtDU is obtained. At the beginning of the kth step, all non-zeros 
in columns 1,2, ... ,k−1 below the diagonal, have been eliminated. Multiples of the 
kth row are then subtracted from all rows which have a non-zero in column k 
below the diagonal. On performing this operation, new non-zero entries may be 
introduced in row k+1, ... ,N to the right of column k. Cancellations may also 
occur, producing new zeros, but this is rare in practice and will be neglected. 
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Consider the active submatrix at the kth step (an active submatrix contains all 
elements )k(

ijA with i,j ≥ k). Let Sk be the graph associated with the active 

submatrix. Sk is called an elimination graph, Parter [186]. The nodes of this graph 
are N−k+1 last numbered nodes of S. Sk contains all members connecting those 
nodes which were present in S, and additional members corresponding to fill-ins 
produced during the k−1 initial elimination steps. The sequence of S=S1, S2, S3, ... 
can be obtained using the following rule: 

To obtain Sk+1 from Sk, delete node k and add all possible members between 
nodes, which are adjacent to node k in Sk. 

As an example, consider a graph S and the corresponding adjacency matrix, as 
shown in Figure 7.11. Two steps of the Gaussian elimination and the 
corresponding elimination graphs are also illustrated.  
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                                (a)  S=S1.                                      (b) Matrix A1. 
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                                  (c)  S2.                                               (d) Matrix A2. 
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(e) S3.                                                     (f) Matrix A3. 

Fig. 7.11   Illustration of two steps of Gaussian elimination. 
 

Eliminating the rest of the nodes and considering a clique (a complete graph) 
between the nodes adjacent to each eliminated node (when such members are not 
present), matrix U is obtained. The structure of U + Ut and the corresponding 
filled graph are shown in Figure 7.12.   
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                             (a)  SF.                                                (b) Matrix U+Ut. 

Fig. 7.12   The structure of U+Ut and the corresponding graph. 
 

There are algorithms, which try to reduce the number of fill-ins caused by 
elimination. The minimum-degree algorithm of Tinney [237] is perhaps the best 
method for such a reduction. For brevity this will not be discussed here; the 
interested reader may refer to Tinney´s original paper. 
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7.10 ELEMENT ORDERING  FOR  BANDWIDTH  

 OPTIMISATION OF FLEXIBILITY MATRICES 

The elements of a generalized cycle basis (GCB), as defined in Chapter 6, must be 
ordered to obtain a banded flexibility matrix G. This is similar to ordering the 
elements of a cutset basis (nodal numbering) for reducing the bandwidth of the 
stiffness matrix K. This problem can be transferred to a nodal ordering algorithm 
by defining appropriate mathematical structures for the transformation of the 
connectivity properties. Two approaches for this problem are developed in the 
following: 

7.10.1  AN ASSOCIATE GRAPH 

An associate graph A(B(S)) of a generalized cycle basis B(S) of S is a graph 
whose nodes are in a one-to-one correspondence with the elements of B(S), and 
two nodes are connected if two elements of B(S) have at least one common 
member. As an example, the associate graph of the mesh basis in Figure 7.13(a) is 
depicted in Figure 7.13(b). 

0

C k

 
                 (a) A mesh basis B(S) of S.              (b) The associate graph of B(S). 

Fig. 7.13   A mesh basis and its associate graph. 

A weighted associate graph can similarly be defined. For this graph, the nodes 
and members are assigned integer numbers. The weight of a node in A(B(S)) is 
taken as the number of members of the corresponding cycle in S, and the weight 
of a member mk = (ni,nj) in A(B(S)) is taken as the number of members of Ci ∩ Cj, 
where Ci and Cj are the cycles of S corresponding to the nodes ni and nj of 
A(B(S)), respectively. 
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7.10.2  DISTANCE NUMBER OF AN ELEMENT 

The distance di of a node ni of S from a selected node O, is the length of the 
shortest path connecting ni to O. The distance number of a cycle or a γ-cycle or an 
element Ck from O, is defined as one of the following: 

(a) The distance of the nearest node of Ck from O, denoted by n
kd . 

(b) The distance of the furthest node of Ck from O, denoted by f
kd . 

(c) The mean value of n
kd  and f

kd ; i.e | (1/2)( n
kd + f

kd ) |, where |.| means the 
integer part of the number. 

(d) The sum of n
kd  + | (L(Ck)/2 |, where L(Ck) is the length of Ck. 

(e) The mean value of the distance of the nodes of Ck; i.e.⎪ ∑
=

)kC(L

1i
ki )C(L/d ⎪. 

As an example, the values defined above for a cycle Ck are shown in bold lines in 
Figure 7.13(a), and with respect to a reference node O are 5, 6, 5, 7 and 5, 
respectively. For simplicity, only the integer parts of the divisions are considered. 

Any of the definitions (a)-(e) can be used as the distance number of a cycle, a γ-
cycle or an element of a finite element model (FEM). 

7.10.3  ELEMENT ORDERING ALGORITHMS 

In the following, two algorithms are presented for ordering the elements of a cycle 
basis, a GCB, an FEM or the substructures of a structure. However, for simplicity 
we will refer to a GCB only. 

Algorithm  A 

Step 1: Order the nodes of S with a nodal numbering algorithm. 

Step 2: Use the same starting node as in Step 1 to form an SRT and find the 
distance numbers of the elements of the GCB. 

Step 3: Assign these distance numbers to the nearest (furthest or any other 
appropriate intermediate) nodes of the elements of the GCB. In this process a node 
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may become the representative node of p elements. Then p different (some may be 
equal) distance numbers will be assigned to the representative nodes. 

Step 4: Order these nodes in ascending order of distance number. A node 
representing p elements will receive p different numbers. For equidistant nodes, 
the same sequence as the nodal numbering of Step 1 should be used. 

Step 5: Order the elements of the GCB with the same numbers received by their 
representative nodes. This provides an efficient ordering for the elements of the 
GCB. 

Algorithm B 

Step 1: Construct the associate graph A(B(S)) of the GCB. 

Step 2: Generate an SRT of S, starting from an appropriate node O, and find the 
distance numbers of the elements of the GCB. 

Step 3: Assign these numbers to the nodes of A(B(S)), and order its nodes by a 
nodal numbering algorithm, with a starting node which corresponds to an element 
containing O . 

Step 4: Reorder the nodes of A(B(S)) in ascending order of their distance 
numbers obtained in Step 2. For equidistant nodes, the same sequence as that 
obtained by the nodal numbering algorithm of Step 3 should be used. 

Step 5: Number the elements in the same order as that obtained for their 
representative nodes in A(B(S)). This leads to an efficient numbering of the 
elements of the considered GCB. 

7.10.4  EXAMPLE 

Let S be the model of a rigid-jointed planar frame. Suppose the selected cycle 
basis consists of the boundaries of the bounded regions of S (a mesh basis), Figure 
7.13(a). 

For Algorithm A, an SRT starting from O is generated, Figure 7.14(a), and the 
distance numbers of the cycles corresponding to definitions (a) and (e) of Section 
7.10.2 are calculated and assigned to the representative nodes of the cycles. The 
nearest node of a cycle to O is taken as its representative node, Figures 7.14(b) and 
(c). These nodes are then ordered, leading to an ordered cycle basis. The 
bandwidths of the cycle adjacency matrices for these orderings are 15 and 13. The 
latter result can further be reduced to 11 by imposing additional restrictions in the 
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process of ordering. Since the frame is planar, the bandwidths of the 
corresponding flexibility matrices will be 45 and 39, respectively. 
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                         (a)  An SRT of S.           (b)  Cycle ordering by definition (a). 
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          (c)  Cycle ordering by definition (e).   (d)  A(B(S)) and its nodal ordering. 

Fig. 7.14   S, and ordering the elements of its cycle basis. 

Algorithm B is also applied to this example. The associate graph A(B(S)) of the 
mesh basis is formed, Figure 7.14(d), and using definition (e) for distance number 
of the elements, the order of the nodes of A(B(S)) is obtained. The numbering of 
the cycles is shown in Figure 7.14(d), which corresponds to a bandwidth of 13 for 
its cycle adjacency matrix, and 39 for its flexibility matrix. 
 

 
7.11 ORDERING FOR BANDWIDTH OPTIMISATION 

  OF FINITE ELEMENT MESHES 

For finite element nodal ordering, different methods are developed. The 
application of a natural associate graph, in a two-step approach, has been 
suggested by Kaveh [89] and Fenves and Law [49]. A corner node method is 
developed by Cassell et al. [21] and Kaveh and Ramachandran [117]. The 
application of an element clique graph is due to Sloan [218,220] and Livesley and 
Sabin [162].  A comparative study of the application of these graphs has been 
made by Kaveh and Behfar [120] Additional graphs for transforming the 
information concerning the connectivity of the FEM to those of different simple 
graphs are introduced and employed in efficient Finite element nodal numbering 
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by Kaveh and Roosta [116]. In the following, two important graphs associated 
with FEMs are defined. For other graphs and a detailed study, reference [111] can 
be consulted. 

A natural associate graph can be defined in the same way as the associate graph 
of Section 10.4. In this graph, nodes correspond to the elements of the FEM and 
two nodes are connected if the corresponding elements have a common boundary. 
As an example, the natural associate graph of the FEM in Figure 7.15(a) is 
depicted in bold lines in Figure 7.15(b). 

             
 (a) A finite element model.            (b) The natural associate graph of the model. 

Fig. 7.15   An FEM and its natural associate graph. 

Algorithms A and B of Section 7.10 can also be used for element ordering of an 
FEM, similarly to ordering the elements of a GCB. Once the elements are ordered, 
the nodal ordering within each element should be performed. Special 
considerations in specifying priority to various nodes of an element, such as mid-
side nodes, mid-element nodes and corner nodes of different valencies, lead to a 
suitable nodal numbering of an FEM. This method has been developed by Kaveh 
[89,102] and applied successfully by Fenves and Law [49]. 

The element clique graph of an FE mesh, is a graph whose nodes are the same as 
those of the FE mesh and two nodes ni and nj of the element clique graph are 
connected with a member if ni and nj share an element of the FE mesh. A small FE 
mesh containing linear rectangular and triangular elements is depicted in Figure 
7.16(a), and the element clique graph of this FE mesh is shown in Figure 7.16(b). 

                
(a) A simple finite element mesh      (b) The element clique graph of model (a) 

Fig. 7.16   An FE mesh and its element clique graph. 
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Other mathematical models have been used for transforming the FE nodal 
ordering to graph nodal ordering by Kaveh [130] and Livesley and Sabin [162]. A 
comparative study of five such methods can be found in Kaveh and Behfar [120]. 

 

7.12  ORDERING USING ALGEBRAIC GRAPH THEORY 

7.12.1 DEFINITIONS 

Let S(N,M) be a graph with node set N, containing n nodes, and the member set 
M. The adjacency matrix A = [aij] n n×  of the labelled graph S is defined as 
follows: 

⎩
⎨
⎧

=
otherwise0

n oadjacent t is n node if1
a ji

ij  

The degree matrix D = [dij] n n×  is a diagonal matrix of the node degrees; dii is 
equal to the degree of the ith node. 

Consider the Laplacian matrix L = [lij] n n×  of a graph as defined in chapter 1.  

The complementary Laplacian matrix Lc of a graph is the same as the Laplacian of 
the complementary graph Kn/G, where Kn is the complete graph constructed on 
"n" nodes. 

7.12.2  EIGENVALUES AND EIGENVECTORS OF MATRIX A  

Consider an eigenproblem as, 

 iii φµ=φA , (7-23) 

where µi is the ith eigenvalue and φi is a corresponding eigenvector. If A is a 
symmetric real matrix, all its eigenvalues are real and can be expressed as:  

 µ1 ≤ µ2 ≤ µ3 ≤ … ≤ µn-1 < µn. (7-24) 

The largest eigenvalue µn is the single root of the characteristic equation of A. The 
corresponding eigenvector φn is the only eigenvector with all positive entries. This 
vector has attractive properties employed in geography and structural mechanics, 
Refs. [111, 25, 26].  
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Gould [64] appears to have introduced the first important application on using the 
properties of φn in calculating the accessibility index of the cities. The city with 
highest accessibility corresponds to the largest entry of φn. Further study and 
applications are due to Straffing [226] and Maas [166]. 

Grimes et al. [65] used the node with smallest accessibility as a pseudo-peripheral 
node, corresponding to the node with the least entry of φn. Kaveh [101] employed 
the properties of φn in the entire process of nodal ordering.  

7.12.3 EIGENVALUES AND EIGENVECTORS OF MATRIX L 

Consider the following eigenproblem, 

 Lvi = λi vi, (7-25) 

where λi is the ith eigenvalue and vi is the corresponding eigenvector. As for A, all 
the eigenvalues of L are real. It can be shown that matrix L is a positive semi-
definite matrix with:  

 ,...0 n1n21 λ≤λ≤≤λ≤λ= −  (7-26) 

and 

 }1, ... ,1 ,1{t
1 =v . (7-27) 

The second eigenvalue λ2 and the corresponding eigenvector v2 have attractive 
properties. Fiedler [51] has investigated various properties of λ2. This eigenvalue 
which is positive for a connected graph is known as the algebraic connectivity of 
the graph, and v2 is known as the Fiedler vector. Mohar [175] has applied (λ2,v2) 
to different problems such as graph partitioning and ordering [7,218,122,128,135]. 
Paulino et al. [184] used v2 for element ordering and nodal numbering. 

7.12.4 A HYBRID METHOD FOR ORDERING 

In this method the advantages of both graph and algebraic graph methods are 
incorporated into an algorithm for ordering. In the algebraic graph method, general 
approaches are used to calculate the eigenvalues and eigenvectors, and the 
information available from the connectivity of their graph models is ignored. This 
is why the computational time and complexity of these algorithms are not low 
enough to compete with pure graph theory methods. In this section, graph 
parameters are used to increase the efficiency of the algebraic graph theory 
approaches. Typical graph parameters can be taken as the degrees of the nodes, the 
1-weighted degrees of the nodes, distances of the nodes from two pseudo-
peripheral nodes, and 2-weighted degrees of the nodes of the graph. 
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The algebraic graph theory method employed here is not the same as those 
employed in a general eigenproblem, but rather a specific method in which the 
valuable features of graph parameters are incorporated.  

In the present method, the graph parameters are considered as Ritz vectors, and the 
first eigenvector of the complementary Laplacian matrix Lc (Fiedler vector) is 
considered as a linear combination of Ritz vectors [127]. The coefficients for these 
vectors are in fact the weights of the graph parameters, which are usually 
determined either by heuristic approaches or by experience. 

Consider the following vector, 

 ∑
=

=φ
p

1i
ii ,w v  (7-28) 

where φ  is an approximation to the Fiedler vector, vi (i=1,…,p) are the normalized 
Ritz vectors representing the graph parameters, and wi (i=1,…,p) are the 
coefficients of the Ritz vectors (Ritz coordinates) which are unknowns, and p is 
the number of parameters being employed. Equation (7-28) can be written as, 

 ,vw=φ  (7-29) 

where w is a p×1 vector and v is an N×p matrix containing the Ritz vectors.  

Consider the eigenproblem of the complementary Laplacian as: 

 .c ρφ=φL  (7-30) 

Approximating φ by φ  and multiplying by vt results in,  

vwvvwLv t
c

t ρ= ,               (7-31) 

or 

 BwAw ρ= , (7-32) 

where A = vtLcv and B = vtv. Both A and B are p×p matrices and therefore Eq. (7-
32) has a much smaller dimension compared to Eq. (7-30): ρ is the approximate 
eigenvalue of the original problem. 
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Solution of the reduced problem, with dimensions far less than the original one, 
results in the first eigenvector w1 and hence φ . Nodal ordering is then performed 
considering the relative entries of φ  in an ascending order. 

Though the Complementary Laplacian is used in the above method, however, one 
can also employ the Laplacian matrix itself. In such a case, the eigenproblem Lφ = 
λφ is reduced to BwAw ρ=  using an identical approach, with p×p matrices being 
involved. For such a small problem, the eigenvalue λ2 and the corresponding 
eigenvector leading to the vector w can easily be calculated. Substituting w in Eq. 
(7-29) leads to the approximate Fiedler vector to be used for ordering. 

The present methods not only lead to a set of suitable coefficients for graph 
parameters, but also provide efficient means for measuring the relative 
significance of each considered graph parameter. These coefficients may also be 
incorporated in the design of other specific graph-theoretical algorithms for 
ordering. 

7.12.5 NUMERICAL RESULTS 

Many examples are studied and the results for three models are presented in this 
section. In Table 7.1, Column 2 contains the results of the Pure Algebraic Graph 
Method (PAGM) of Ref. [184]. 

For the first case, four vectors, representing Ritz vectors, are considered. For these 
vectors, v1 contains the degrees of the nodes, v2 comprises of the 1-weighted 
degrees of the nodes, and v3 and v4 are distances of the nodes from two pseudo-
peripheral nodes. These nodes can be obtained using different algorithms, Kaveh 
[110]. The results are provided in column 3 of the Tables denoted by v4. 

For the second case, five Ritz vectors are employed. The first four vectors are the 
same as those of the previous case, and the fifth vector v5 contains the 2-weighted 
degrees of the nodes of the graph. The results are provided in column 4 of the 
Tables labelled as v5. 

It should be noted that other vectors containing graph properties which influence 
the ordering may be considered additional to the above five vectors. However, the 
formation of such additional vectors may require some extra computational time, 
reducing the efficiency of the algorithm. 

Example 1:  An FE mesh with one opening, comprising of 1248 nodes and 1152 
rectangular elements is considered, as shown in Figure 7.17. The results for 
different methods and their computational time are illustrated in Table 7.1 to 
compare their efficiency. 
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Fig. 7.17   An FE mesh with one opening. 

 

Table 7.1   Results of Example 1. 
 

 PAGM v4 v5 

B 46 43 45 
P 34848 36243 36189 
~F  28.07 29.44 29.25 

Fmax 35 39 39 
Time (sec) 1400.3 2.8 2.9 

 

Example 2:  An H-shaped FE mesh, comprising of 2096 nodes and 3900 
triangular elements is considered, as shown in Figure 7.18. The results for 
different methods and their computational time are illustrated in Table 7.2 to 
compare their efficiency. 
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Fig. 7.18   An FE mesh with one opening. 

 

Table 7.2   Results of Example 2. 
 

 PAGM v4 v5 

B 74 77 77 
P 47741 49400 48936 
~F  23.97 25.63 25.32 

Fmax 37 42 42 
Time (sec) large 2.63 2.89 

 

Example 3:  A two-dimensional FEM of a tunnel, comprising of 6888 nodes and 
6720 rectangular elements is considered, as shown in Figure 7.19. The results of 
using different methods and their computational time are presented in Table 7.3.  
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Fig. 7.19   A two-dimensional FEM of a tunnel. 

 

 

Table 7.3   Results of Example 3. 
 

 PAGM v4 v5 

B 455 331 332 
P 731694 733738 733738 
~F  112.99 112.93 112.93 

Fmax 164 175 175 
Time (sec) 10.6 27.6 28.9 

 

Example 4:  A two-dimensional FE mesh with four openings comprising of 748 
nodes and 1236 triangular elements is considered as shown in Figure 7.20. The 
results for different methods and their computational time are illustrated in Table 
7.4 in order to compare their efficiency. 
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Fig. 7.20   An FEM with four openings. 

 

 

Table 7.4   Results of Example 4.  
 

 PAGM v4 v5 

B 39 49 47 
P 13118 13162 13126 
~F  18.42 18.61 18.56 

Fmax 29 29 29 
Time (sec) 1677 1.2 1.3 

 

Example 5: A three-dimensional finite element model of a nuzzle is considered as 
shown in Figure 7.21. This model, contains 4000 rectangular shell elements. The 
results for different methods and their computational time are illustrated in Table 
7.5, in order to compare their efficiency. 
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7.21   A three-dimensional FE mesh of a nuzzle. 

 

Table 7.5   Results of Example 5. 
 

 PAGM v4 v5 

B 39 49 47 
P 13118 13162 13126 
~F  18.42 18.61 18.56 

Fmax 29 29 29 
Time (sec) 1677 1.2 1.3 

 

7.12.6 DISCUSSION 

The performance of the present method, illustrated in the previous section, 
compares well with a pure algebraic graph method, with a substantial reduction in 
the computational time. Naturally, addition of extra graph parameters will increase 
the computational time required. Relative values of the coefficients of the Ritz 
vectors show the importance of the corresponding parameters in the ordering 
algorithm. For the examples presented in the previous section, the coefficient 
corresponding to v3 and v4 (the distances from the pseudo-peripheral nodes) seem 
to be more important, since most of the examples have a more or less uniform 
distribution of nodal degrees. Naturally, for models with non-uniform degree 
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distributions, the significance of the other graph parameters will also become 
apparent. 

Though only nodal ordering is addressed in here, however, the application of the 
present method can easily be extended to the element ordering. For this purpose, 
the natural associate graph or the incidence graph of an FE mesh, should be used 
in place of the element clique graph. 

 

7.13 BANDWIDTH REDUCTION FOR 

 RECTANGULAR MATRICES 

In previous sections, the bandwidth optimisation of square matrices has been 
discussed. In structural analysis, it may also be desirable to reduce the bandwidth 
of some sparse rectangular matrices. As an example, it may be beneficial to reduce 
the bandwidth of the equilibrium equations of a structure, Kaneko et al. [87]. This 
can be done by optimising the bandwidth of the corresponding cutset basis 
incidence matrix L. Similarly, for compatibility equations, one can optimise the 
bandwidth of C. 

In this section, a K-total graph is defined and two algorithms are presented for 
bandwidth reduction of rectangular matrices. 
 

7.13.1  DEFINITIONS 

Let B be a rectangular matrix with m rows and n columns, whose entries are 
denoted by bij. For each row like i (except the first and the last row, where id = 1 
and id = n, respectively), the integer part of the real number i(n/m) is defined as id. 
Therefore, the entry of B at position (i,id) is considered as the ith diagonal entry. 
For square matrices m = n and i = id. The bandwidth of B is then defined as, 

 b(B) = mr + ml + 1, (7-33) 

where 

},ik  ,0bikmax{m dikdr >≠−=  

and              

}.ik  ,0bkimax{m dikdl <≠−=  
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If B is a symmetric square matrix, then mr = ml and b(B) reduces to the 
conventional definition of square matrices. A rectangular matrix is called banded 
if b(B) is small compared to m. 

Matrix B in block submatrix form, has the same pattern as L, i.e. each non-zero 
entry of L corresponds to a η×η submatrix in B, where η is the degree of freedom 
of a node of the structure. Obviously, reduction of the bandwidth of L leads to a 
banded matrix B. 

The terms "nodes" and "members" have been used for a graph S, and now we use 
"vertices" and "edges" for the elements of a K-total graph, which is defined as 
follows: 

Associate one vertex with each member and each element of the selected cutset 
basis or a cycle (γ-cycle) basis of S. Connect two vertices with an edge if:  

(a) the corresponding members are incident; 

(b) the corresponding cutsets (cycles or γ-cycles) are adjacent; 

(c) the corresponding member and cutset (cycle  or γ-cycle) are incident. 

When a cutset or cycle is changed to a node of S, then the K-total graph becomes a 
total graph, as defined in graph theory (see Behzad [10]). 

Examples of K-T(S) are shown in Figures 7.22 and 7.23, when the cocycle basis 
and cycle basis are considered, respectively. In these figures, small squares are 
used to represent members and circles are employed to show the elements of the 
considered basis. 
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(a)  S and the considered cocycle basis.        (b)  K-T(S) and its nodal ordering. 

Figure 7.22  Reduction of bandwidth for a cutest-member incidence matrix. 
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(a)  S and the considered cycle basis.             (b) K-T(S) and its nodal ordering. 

Fig. 7.23   Reduction of bandwidth for a cycle-member incidence matrix. 

7.13.2 ALGORITHMS 

Algorithm  A 

Construct the K-total graph of S and order its vertices. The corresponding 
sequence, leads to a favourable order of cutsets (nodes) and members of S, to 
reduce the bandwidth of L, which is pattern equivalent to the coefficient matrix of 
the equilibrium equations. A similar approach, reduces the bandwidth of C, when 
cycles (γ-cycles) are considered in place of cutsets. 

This algorithm is now applied to the examples of Figures 7.22 and 7.23, from 
which the corresponding orders for the elements of the bases and members of S 
are obtained. 

Algorithm  B 

Order the nodes of S. Then order the unnumbered members of the stars of the 
nodes in the selected sequence, to obtain a reasonably banded L matrix. 

In general, Algorithm A leads to a better result than Algorithm B, at the expense 
of additional computer time. 

Examples:  Consider a graph S as shown in Figure 7.24 with the corresponding 
member and cutset orders. 
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Fig. 7.24   S with an arbitrarily ordered members and cutsets. 
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The cutset basis incidence matrix of S can be written as,  

⎥
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⎥
⎥
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b(L) = 4+4+1 = 9, 

where artificially defined diagonal entries are encircled. Using the ordering 
obtained by K-T(S), the cutset basis incidence matrix becomes, 

⎥
⎥
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b(L) = 2+2+1 = 5, 

in which the non-zero entries are clustered to the diagonal of the matrix. 

As a second example, consider S as shown in Figure 7.25, in which the regional 
cycles and members are arbitrarily numbered.  
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Fig. 7.25   S with arbitrarily numbered members and cycles. 

The cycle basis incidence matrix for S is given as: 

.
0100110010
1001100100
0010011001

C
C
C

3

2

1

10
m

9
m 

8
m

7
m 

6
m

5
m

4
m

3
m 

2
m 

1
m                         

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=C

 



CHAPTER 7 Ordering for Bandwidth, Profile and Frontwidth …                     261 

 

 

261

For this matrix, b(C) = 7+8+1 = 16. With ordering the cycles and members 
simultaneously, using Algorithm A, the following cycle basis incidence matrix is 
obtained, 

.
1111000000
0010111000
0000010111
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⎣

⎡
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for which b(C) = 4+3+1 = 8. 

For the force method of frames, the coefficient matrix of the equilibrium equations 
can be made banded through reducing the bandwidth of its member-cycle 
incidence matrix. After an algebraic force method is employed, a repeated 
application of the developed method makes the null basis matrix a banded one for 
subsequent applications. Similarly, if a combinatorial approach is used, the 
bandwidth reducing algorithm makes the cycle basis incidence matrix banded, 
leading to a banded statical basis (null basis) matrix. 

 

7.14 SUBSTRUCTURING FOR DOUBLE  

 BORDERED BLOCK DIAGONAL FORM 

In many engineering applications, particularly in the analysis and design of large 
systems, it is convenient to allocate the design of certain components 
(substructures) to individual design groups [198]. The study of each substructure 
is carried out more or less independently, and the dependencies between the 
substructures resolved after the study of individual substructure is completed. The 
dependencies among the components may of course require redesign of some of 
the substructures so the above procedure may be iterated several times. 

As an example, suppose for a structural model, we choose a set of nodes I and 
their incident members which, if removed, disconnect it into two substructures. If 
the variables associated with each substructure are numbered consecutively, 
followed by the variables associated with I, then the following partitioning of the 
stiffness matrix A of the entire structure will be induced: 

 .
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The Cholesky factor L of A, correspondingly will be partitioned as, 
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where t
111111 LLA = , t

222222 LLA = , t
23222313

t
1113   , LLWALW == , and 

.23
1

22
t
2323

1
11

t
133333

t
11 AAAAAAALL −− −−=  Hence A11 and A22 correspond to 

each substructure and the matrices A13 and A23 represent the "glue" which relates 
the substructures through the nodes of I. 

Since the factors of A11 and A22 are independent, they can be computed in either 
order, or in parallel if two processors are available, Finally, in some design 
applications, several substructures may be identical, for example, have the same 
configuration and properties, and each substructure may be regarded as a super-
element, which is constructed once and used repeatedly in the design of several 
structures. In the above example, A11 and A22 could be identical. 

In the following, an algorithm is presented for partitioning and ordering of the 
nodes of a structure, which can be incorporated in any program available for the 
analysis of structures. 
 

7.14.1  MAIN ALGORITHM FOR SUBSTRUCTURING 

Let S be the graph model of a structure. The following algorithm decomposes S 
into q subgraphs, with equal or near equal number of nodes (support nodes are not 
counted) and the least number of interface nodes. 

Step 1: Delete all the support nodes with their incident members, and denote the 
remaining subgraphs by Sr.  

Step 2: Determine the distance between each pair of nodes of Sr, and evaluate 
the eccentricities of its nodes. 

Step 3: Sort the remaining nodes (RN) in ascending order of their eccentricities. 

Step 4: Select the first node of RN as the representative node of the subgraph S1 
to be determined and find a second node as the representative node of subgraph S2 
with a maximum distance from S1. 

Step 5: Find the third representative node with the maximum least distance 
from S1 and S2 , and denote it with S3. 
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Step 6: Subsequently, select a representative node of subgraph Sk for which the 
least distance from S1, S2, ... , Sk-1 is maximum. Repeat this process until q 
representative nodes of the subgraphs to be selected are found. 

Step 7: For each subgraph Sj (j=1,...,q), add an unselected node ni of RN, if it is 
adjacent only to Sj and its least distance from all nodes of other subgraphs is 
maximum. 

Step 8: Continue the process of Step 7, without the restriction of transforming 
one node to each subgraph Sj, until no further node can be transferred. The 
remaining nodes in RN are interface nodes. 

Step 9: Transfer the support nodes to the nearest subgraph. 

Once the nodes for each subgraph Sj are found, the incidence members can easily 
be specified. 

The algorithm is recursively applied to the selected substructures, decomposing 
each substructure into smaller ones, resulting in a further refinement. 
 

7.14.2   SIMPLIFIED ALGORITHM FOR SUBSTRUCTURING 

In the following, a simplified algorithm is presented which requires less storage 
and computer time than the main algorithm at the expense of selecting subgraphs, 
with a slightly higher number of interface nodes for some structural models. In this 
approach, the number of distances to be considered and compared for finding the 
nodes of substructures is far less than when the main algorithm is used, where the 
distances between each pair of nodes of S are required. This simplified algorithm, 
consists of the following steps: 

Step 1:  Form an SRT rooted from an arbitrary node, in order to find a 
representative node of S1 with maximum distance from the root. The selected node 
is also denoted by S1. 

Step 2:   Form an SRT rooted from S1, to calculate the distance between each node 
of S and S1, and find the representative node S2 in a maximum distance from S1. 

Step 3:   Form an SRT rooted from S2, to calculate the distance between each node 
of S and S2 and find the representative node S3 in a maximum least distance from 
the selected nodes. Repeat this process until q representative nodes S1, S2, ... , Sq 
forming a transversal , are selected. 

Step 4:   For each subgraph Si, find a node adjacent to the previously formed Si 
only, with maximum least distance from other representative nodes, in turn. 
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Step 5:   Continue the process of Step 4, without the restriction of transforming 
one node to each subgraph Si, until no further node can be transferred. 

In this algorithm, support nodes are treated in a similar way to Steps 1 and 9 of the 
main algorithm. 

The above algorithms, can easily be applied to subdomaining of finite element 
models, Kaveh and Roosta [115]. 

 

EXERCISES 

7.1 Find a good starting node for nodal numbering of the following structural 
models, using graph-theoretical approaches: 

  

(a)                                                (b) 

 

(c)                                                   (d) 

7.2 Find a good starting node for the following models using an algebraic 
graph-theoretical method, i.e. calculate the dominant eigenvector of the 
corresponding adjacency matrices. 
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(a)                                          (b) 

7.3 For the models of Exercise 7.1, find a suboptimal transversal and perform 
the ordering. Calculate the bandwidth of the corresponding stiffness matrices 
when the models are viewed as planar trusses. 

7.4 Find a connectivity coordinate system for models (a) and (b) in Exercise 
7.1. 

7.5 For the following graph S, consider a mesh basis and order the cycles, 
using different distance numbers, to optimise the bandwidth of the corresponding 
cycle adjacency matrix:  

 

7.6 Order the nodes of the following FEM using the natural associate graph of 
the model: 

 

7.7 Order the members and elements of a fundamental cycle basis of the 
following graph, in order to reduce the bandwidth of its cycle basis incidence 
matrix. Repeat the process, to optimise the bandwidth of its cocycle basis 
incidence matrix. 
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