
CHAPTER 1 

Basic Concepts and  

Definitions of Graph Theory 
 

1.1   INTRODUCTION 

Graph theory is a branch of mathematics started by Euler [45] as early as 1736. It 
took a hundred years before the second important contribution of Kirchhoff [139] 
had been made for the analysis of electrical networks. Cayley [22] and Sylvester 
[228] discovered several properties of special types of graphs known as trees. 
Poincaré [195] defined in principle what is known nowadays as the incidence 
matrix of a graph. It took another century before the first book was published by 
König [141]. After the second world war, further books appeared on graph theory, 
Ore [183], Behzad and Chartrand [11], Tutte [240], Berge [13], Harary [70], 
Gould [63], and West [245], among many others. 

Graph Theory has found many applications in engineering and science, such as 
chemical, civil, electrical and mechanical engineering, architecture, management 
and control, communication, operational research, sparse matrix technology, 
combinatorial optimisation, and computer science. Therefore many books have 
been published on applied graph theory such as those by Bondy and Murty [16], 
Chen [24], Thulasiraman and Swamy [235], Wilson and Beineke [252], Mayeda 
[170], Christofides [26], Gondran and Minoux [61], Beineke and Wilson [12], 
Deo [37], Cooke et al. [32], Kaveh [110-111] and many others. In recent years, 
due to the extension of the concepts and applications of the graph theory, many 
journals such as Journal of Graph Theory, Journal of Combinatorial Theory A & 
B, Discrete and Applied Mathematics, SIAM Journal of Discrete Mathematics, 
European Journal of Combinatorics, and Graphs and Combinatorics are being 
published to cover the advances made in this field. 
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In this chapter basic definitions and concepts of graph theory are presented; 
however, for proofs and details the reader may refer to textbooks on this subject, 
Refs [63,70,245]. 
 

1.2   BASIC DEFINITIONS 

There are many physical systems whose performance depends not only on the 
characteristics of their components, but also on their relative location. As an 
example, in a structure, if the properties of a member are altered, the overall 
behaviour of the structure will be changed. This indicates that the performance of 
a structure depends on the characteristics of its members. On the other hand, if the 
location of a member is changed, the properties of the structure will again be 
different. Therefore the connectivity (topology) of the structure influences the 
performance of the whole structure. Hence it is important to represent a system so 
that its topology can be understood clearly. The graph model of a system provides 
a powerful means for this purpose. 

1.2.1   DEFINITION OF A GRAPH 

A graph S consists of a set N(S) of elements called nodes (vertices or points) and 
a set M(S) of elements called members (edges or arcs) together with a relation of 
incidence which associates each member with a pair of nodes, called its ends. 

Two or more members joining the same pair of is are known as a multiple 
member, and a member joining a node to itself is called a loop. A graph with no 
loops and multiple members is called a simple graph. If N(S) and M(S) are 
countable sets, then the corresponding graph S is finite. Since the great majority of 
the results in this book pertain to finite graphs with no loop and multiple members, 
only simple finite graphs are needed, which are referred to as graphs. 

The above definitions correspond to abstract graphs; however, a graph may be 
visualized as a set of points connected by line segments in Euclidean space; the 
points are identified with nodes, and the line segments without their end points are 
identified with members. Such a configuration is known as a topological graph. 
These definitions are illustrated in Figure 1.1. 

 
loopmultiple members

 
 (a) A non-simple graph.                         (b) A simple graph. 

Fig. 1.1   Non-simple and simple graphs. 
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1.2.2   ADJACENCY AND INCIDENCE 

Two nodes of a graph are called adjacent if these nodes are the end nodes of a 
member. A member is called incident with a node if it is an end node of that 
member. Two members are called incident if they have a common end node. The 
degree (valency) of a node ni of a graph, denoted by deg (ni), is the number of 
members incident with that node. Since each member has two end nodes, the sum 
of node-degrees of a graph is twice the number of its members (handshaking 
lemma - known as the first theorem of graph theory). 
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Fig. 1.2   A simple graph S. 

As an example, in Figure 1.2 two nodes n4 and n5 are adjacent. Node n3 is incident 
with member m2 and m6, and deg (n2) = 4. 

1.2.3  ISOMORPHIC GRAPHS 

Two graphs S1 and S2 are called isomorphic if there exists a one-to-one 
correspondence between their node sets and adjacency is preserved. As an 
example, the three graphs shown in Figure 1.3 are isomorphic. The word 
isomorphic is derived from the Greek words same and form. 
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                   (a)                                    (b)                                       (c) 

Fig. 1.3   Three isomorphic graphs. 
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1.2.4   GRAPH OPERATIONS 

A subgraph Si of S is a graph for which N(Si) ⊆ N(S) and M(Si) ⊆ M(S), and each 
member of  Si has the same ends as in S. 

The union of subgraphs S1, S2 , ... , Sk  of S , denoted by Sk = i
k

1i
S

=
∪ = S1 ∪ S2  ∪  ... 

∪ Sk, is a subgraph of S with N(Sk) = )S(N i
k

1i=
∪  and M(Sk) = )S(M i

k

1i=
∪ . The 

intersection of two subgraphs Si and Sj is similarly defined using intersections of 
node-sets and member-sets of the two subgraphs. The ring sum of two subgraphs 
Si ⊕ Sj = Si ∪ Sj − Si ∩ Sj is a subgraph which contains the nodes and members of 
Si and Sj except those elements common to Si and Sj. These definitions are 
illustrated in Figure 1.4. 

 
                       (a) S                                 (b) Si                                    (c) Sj 

 
    (d) Si ∪ Sj                        (e) Si ∩ Sj                      (f) Si ⊕ Sj 

Fig. 1.4   A graph, two of its subgraphs, union, intersection and ring sum. 

There are many other useful operations, such as Cartesian product, direct product 
and strong Cartesian product, successfully applied to structural engineering [129]. 

1.2.5   WALKS, TRAILS AND PATHS 

A walk w of S, is a finite sequence w = {n0 , m1 , n1 ,..., mk , nk} whose terms are 
alternately nodes ni  and members mi of S for 1 ≤ i ≤ k, and ni-1 and ni are the two 
ends of mi. A trail t in S, is a walk in which no member of S appears more than 
once. A path P in S, is a trail in which no node appears more than once. The 
length of a path Pi  denoted by L(Pi)  is taken as the number of its members. Pi is 
called the shortest path between the two nodes n0 and nk, if for any other path Pj 
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between these nodes L(Pi) ≤ L(Pj). The distance between two nodes of a graph is 
defined as the number of its members of a shortest path between these nodes. 

As an example, in Figure 1.5, 

w = ( n1 , m5 , n5 , m6 , n2 , m7 , n6 , m11 , n5 , m6 , n2 , m2 , n3 ) 

is a walk between n1 and n3, in which member m6 and nodes n2 and n5 are repeated 
twice. 
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           (a) A walk w in S.              (b) A trail t in S.             (c) A path P in S. 

Fig. 1.5   A walk, a trail and a path in S. 

t = ( n1 , m5 , n5 , m6 , n2 , m7 , n6 , m11 , n5 , m10 , n4 ) 

is a trail between n1 and n4  in which node n5 is repeated twice. 

P = ( n1 , m5 , n5 , m6 , n2 , m7 , n6 ) 

is a path of length 3 in which no node and no member is repeated. 

1.2.6   CONNECTEDNESS 

Two nodes ni and nj are said to be connected in S if there exists a path between 
these nodes. A graph S is called connected if all pairs of its nodes are connected. 
A component of a graph S is a maximal connected subgraph, i.e. it is not a 
subgraph of any other connected subgraph of S. These definitions are illustrated in 
Figure 1.6. 

 
 (a) A connected graph.                  (b) A disconnected graph. 

Fig. 1.6   A connected graph and a disconnected graph with 3 components. 
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1.2.7   CYCLES AND CUTSETS 

A cycle is a path (n0 , m1 , n1 , ... , mp , np) for which n0 = np and p ≥ 1 ; i.e. a cycle 
is a closed path. Similarly, a closed trail (hinged cycle) and a closed walk can be 
defined, Figure 1.7. 

 
                           (a) A cycle of S.                 (b) A hinged cycle of S. 

Fig. 1.7   Two cycles of S. 

A cutset in a graph S is a set of members whose removal from the graph increases 
the number of connected components of S, Figure 1.8(a). If a cutset results in two 
components S1 and S2, then it is known as prime cutset, Figure 1.8(b). A link is a 
member with its ends in two components produced by a cutset. Links are shown in 
bold lines. In a prime cutset, if one of the components S1 or S2 consists of a single 
node, then the prime cutset is called a cocycle, Figure 1.8(c). 

 
        (a) A cutset of S.           (b) A prime cutset of S.           (c) A cocycle of S. 

Fig. 1.8   Different cutsets of S. 

1.2.8   TREES, SPANNING TREES AND SHORTEST ROUTE TREES 

A tree T of S is a connected subgraph of S, which contains no cycle. A set of trees 
of S forms a forest. If a tree contains all the nodes of S, it is called a spanning tree 
of S. For simplicity it will be referred to as a tree, from now on.  

A shortest route tree (SRT) rooted at a specified node n0 of S, is a tree for which 
the distance between every node nj of T and n0 is a minimum. An SRT of a graph 
can be generated by the following simple algorithm: 

Label the selected root as "0" and the adjacent nodes as "1". Record the members 
incident to "0" as tree members. Repeat the process of labelling with "2" the 
unnumbered ends of all the members incident with nodes labelled as "1", again 
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recording the tree members. This process terminates when each node of S is 
labelled and all the tree members are recorded. The label of the last node indicates 
the length of the SRT and the maximum number of nodes with the same label is 
defined as the width of the SRT. 

The above definitions are illustrated in Figure 1.9. The length and width of the 
SRT in Figure 9(d) are 2 and 3, respectively. 

It is easy to prove that for a tree T, 

 M(T) = N(T) − 1, (1-1) 

where M(T) and N(T) are the numbers of members and nodes of T, respectively. 

The complement of T in S is called a cotree, denoted by T*. The members of T are 
known as branches and those of T* are called chords. For a connected graph S, 
the number of chords is given by: 

 M(T*) = M(S) − M(T). (1-2) 

Since, N(T) = N(S),  hence, 

 M(T*) = M(S) − N(S) + 1, (1-3) 

where M(S) and N(S) are the numbers of members and nodes of S, respectively. 
Notice that for a set and its cardinality the same notation is used and the difference 
should be obvious from the context. 

 

               (a) A graph S.             (b) A tree of S.            (c) A spanning tree of S.  

n0
 

     (d) An SRT rooted from n0.    (e) A cotree shown in dashed lines. 

Fig. 1.9   A tree and a cotree of S. 
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1.3   DIFFERENT TYPES OF GRAPHS 

In order to simplify the study of properties of graphs, different types of graphs 
have been defined. Some important ones are as follows: 

A null graph is a graph which contains no members. Thus Nk is a graph containing 
k isolated nodes.   

A cycle graph is a graph consisting of a single cycle. Therefore Ck is a polygon 
with k members. 

A path graph is a graph consisting of a single path. Hence Pk is a path with k 
nodes and (k−1) members. 

A complete graph is a graph in which every two distinct nodes are connected by 
exactly one member, Figure 1.10.  

 

     K1               K2                        K3                        K4                          K5 

Fig. 1.10   Some complete graphs. 

A complete graph with N nodes is denoted by KN. It is easy to prove that a 
complete graph with N nodes has N(N − 1)/2 members. 

A graph is called bipartite, if the corresponding node set can be split into two sets 
N1 and N2 in such a way that each member of S joins a node of N1 to a node of N2. 
A complete bipartite graph is a bipartite graph in which each node N1 is joined to 
each node of N2 by exactly one member. If the number of nodes in N1 and N2 are 
denoted by r and s, respectively, then a complete bipartite graph is denoted by Kr,s. 
Examples of bipartite and complete bipartite graphs are shown in Figure 1.11. 

 
                    (a) A bipartite graph.         (b) A complete bipartite graph K3,4. 

Fig. 1.11   Two bipartite graphs. 
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1.4  VECTOR SPACES ASSOCIATED WITH GRAPHS 

In this section, it is shown that a vector space can be associated with a graph, and 
the properties of two important subspaces of this vector space, namely cycle and 
cutset spaces, is studied. For this purpose, simple definitions from sets, groups, 
fields and vector spaces are briefly presented. The material presented in this 
section is based on the work of Thulasiraman and Swamy [235]. 

1.4.1 GROUPS AND FIELDS 

Consider a finite set S = {a,b,c,….}, and define a binary operation + on S. This 
operation assigns to every pair (a and b)∈S a unique element denoted by a+b. The 
set S is said to be closed under + if the element (a+b)∈S, whenever (a and b)∈S.  

The operation + is said to be associative if a+(b+c) = (a+b)+c for all a, b and c in 
S. The operation is called commutative if a+b = b+a for all a and b in S. 

Definition 1: A set S with a binary operation +, called addition, is a group if the 
following postulates hold: 

1. S is closed under +. 

2. The operation + is associative. 

3. There exists a unique element e∈S such that a+e = e+a = a for all a∈S. 

4. For each element a∈S there exits a unique element b such that b+a = a+b = e. 
The element b is known as the inverse of a, and vice versa. Obviously the identity 
element e is its own inverse. 

A group is called abelian if the operation + is commutative. 

Examples: The set S = {…,−2,−1,0,+1,+2,…} consisting of all integer numbers 
under usual addition  for  +  forms a group. Here, 0 is the identity element and –a 
is the inverse of a ∈S. This group is also abelian. 

Another example is the set Zp = (0,1,2,…,p−1} of integers with modulo p addition 
operation. If a = mp+q for 0 ≤ q ≤ p−a, then in modulus arithmetic a = q(modulo 
p). In this group, 0 is the identity element and the integer p−a is the inverse of a, 
except 0 which is its own inverse. As an example, the addition table of Z3 is shown 
in Table 1.1. 
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Table1.1   Table of Z3. 

 

+ 0 1 2 

0 0 1 2 

1 1 2 0 

2 2 0 1 

Definition 2: A set F with two operations of addition (+) and multiplication ( o ) is 
a field if the following postulates hold:  

1. F is abelian group under +, with the identity element denoted as e. 

2. The set F − {e} is an abelian group under o , the multiplication operation. 

3. The multiplication operation is distributive with respect to addition, i.e. 

a o (b+c) = (a o b) + (a o c) for all a, b and c in F. 

Example: Consider Zp={0,1,2, … ,p−1} again with addition (modulo p) and 
multiplication (modulo p) as the two operation. It can be shown that the set 
Zp−{0}={1,2, … p−1} is an abelian group if p is prime. Therefore Zp is a field if p 
is a prime. The set Z2 of integers modulo 2, denoted GF(2), is an important field in 
our study with: 

0+0 = 0, 1+0 = 0+1 = 1, and 1+1= 0, 

0 o 0 = 0, 1 o 0 = 0 o 1 = 0, and 1 o 1 = 1. 

1.4.2 VECTOR SPACES 

Consider a set S with a binary operation . Let F be a field with + and o  being 
the addition and multiplication operations, respectively. A multiplication 
operation, denoted by ∗, is also defined between the elements of F and those of S. 
This operation assigns to each ordered pair (α,s) a unique element denoted by α∗s, 
where α is in F and s is in S. The set S is a vector space over F if the following 
postulates hold: 

1. S is an abelian group under . 
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2. For any elements α and β in F, and any elements s1 and s2 in S the followings 
hold: 

1s(∗α  s2) = )s( 1∗α )s( 2∗α  

and 

)s(s)( 11 ∗α=∗β+α )s( 1∗β  

3. For any element α and β in F and any element s in S: 

)s(s)( ∗β∗α=∗β∗α  

4. For any element s in S, 1∗s = s, where 1 is the multiplicative identity in F. 

Consider a vector space S, over the field F. The elements of S are called vectors 
and those of F are known as scalars. If an element s of S is expressible as,   

 s = (α1∗s1) (α2∗s2)  ….  (αj∗sj), (1-4) 

where si’s are vectors and αi’s are scalars, then s is said to be a linear combination 
of s1,s2, … ,sj. Vectors s1,s2, … ,sj are said to be linearly independent if no vectors 
in this set is expressible as a linear combination of the remaining vectors in the set. 
Vectors s1,s2, … ,sn form a basis in the vector space S if they are linearly 
independent and every vector in S is expressible as a linear combination of these 
vectors. The vectors s1,s2, … ,sn are known as basis vectors. The dimension of the 
vector space S, denoted by dim(S),  is the number of vectors in a basis of S. If S′  
is a subset of the vector space S over F, then S′  is a subspace of S if S′  is also a 
vector space on F. The direct sum S1  S2 of two subspaces S1 and S2 of S is the set 
of all vectors of the form s1 s2, where s1 ∈ S1 and s2 ∈ S2. It can be proved that 
S1  S2 is also a subspace, and its dimension is given by 

 dim(S1  S2) = dim(S1) + dim(S2) − dim(S1∩S2). (1-5) 

Note that S1∩S2 is also a subspace whenever S1 and S2 are subspaces. 

1.4.3  VECTOR SPACE OF A GRAPH 

Consider a graph S = (N,M) and let WS denote the collection of all subsets of M, 
including the empty set ∅. Under ring sum operation ⊕ between sets, in the 
following it is shown that WS is an abelian group. Defining a suitable 
multiplication between elements of the field Z2 and those of WS, it can be shown 
that WS is a vector space over Z2. 



12                                               Structural Mechanics: Graph and Matrix Methods 

 

12

It can be shown that WS is closed under ⊕. The operator ⊕ is associative and 
commutative. Further for any element Mi in WS, Mi ⊕ ∅ = Mi and Mi ⊕ Mi = ∅. 
Therefore for the operation ⊕, ∅ is the identity element, and each Mi is its own 
inverse. Hence WS is an abelian group under ⊕. 

Let ∗, a multiplication operation between the elements of Z2 and those of WS be 
defined as follows: 

1∗Mi = Mi   and   0∗Mi = ∅. 

With this definition of ∗ one can verify that the elements of WS satisfy the 
following other requirements of a vector space: 

 1. (α+β)∗Mi = (α∗Mi) ⊕ (β∗Mi). 

 2. α∗(Mi ⊕ Mj) = (α∗Mi) ⊕ (α∗Mj). 

 3. (α.β)∗Mi = α∗(β∗Mi).  

 4. 1∗Mi = Mi. (Notice that 1 is the multiplicative identity in Z2.) 

Therefore WS is a vector space over Z2. The dimension of this space is equal to the 
number of members of the graph S. 

Since each member-induced subgraph of S corresponds to a unique subset of M, 
and by definition the ring sum of any two member-induced subgraphs corresponds 
to the ring sum of their corresponding member sets, it is obvious that the set of all 
members-induced subgraphs of S is also a vector space over Z2 if the 
multiplication is defined as follows: 

1∗Mi = Mi   and    0∗Mi = ∅, the null graph having no nodes and no members. 

This vector space will also be referred to by the symbol WS. 

 

1.4.4  CYCLE SUBSPACE AND CUTSET SUBSPACE OF A GRAPH 

Now we study two important subspaces of WS, namely cycle space and cutset 
space of a graph. 

Theorem 1: The set of all simple cycles and union of member-disjoint cycles of a 
graph, WC, is a subspace WS of S. 
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Consider C1 and C2 as two cycles of WC. To prove the theorem one should show 
that C1 ⊕ C2 is also a cycle C3 belonging to WC. Let n be a node of C3. This node 
is present at least in of the two cycles C1 and C2. Let Mi (i=1,2,3), denotes the 
members incident to n in Ci. Let |Ci| shows the number of members of Ci, thus |Mi| 
is the number of members incident to n in Ci. Note that |M1| and |M2| are both even 
and one of them may be zero. Furthermore |M3| is non-zero. 

Since C3 = C1 ⊕ C2, we have: 

M3 = M1 ⊕ M2. 

Therefore: 

|M3| = |M1| ⊕ |M2| − 2|M1∩M2|. 

Since |M1| and |M2| are both even, thus |M3| is also even. This is true for all the 
nodes of C3, and it follows that it is a cycle in WC and the theorem is proven. 

Theorem 2: The set of all cutsets and the union of member-disjoint cutsets WC’ in 
a graph S, is a subspace of the vector space WS of S. 

It can be shown that the ring sum of any two cuts in a graph is a cut in S. Similarly 
the union of any two member-disjoint cuts in a graph S is also a cut in S. Since 
WC’ is closed under the ring sum operation thus the proof is completed. 

1.4.5   FUNDAMENTAL CYCLE BASES 

A special cycle basis known as a fundamental cycle basis can easily be 
constructed corresponding to a tree T of S. In a connected S, a chord of T together 
with T contains a cycle known as a fundamental cycle of S. Moreover, the 
fundamental cycles obtained by adding the chords to T, one at a time, are 
independent, because each cycle has a member which is not in the others. Also, 
every cycle Ci depends on the set of fundamental cycles obtained by the above 
process, for Ci is the symmetric difference of the cycles determined by the chords 
of T which lie in Ci. Thus the cycle rank (cyclomatic number, first Betti number, 
nullity) of graph S which is the number of cycles in a basis of the cycle space of S, 
is given by,  

 b1(S) = M(S) − N(S) + 1, (1-6) 

and if S contains b0(S) components, then: 

 b1(S) = M(S) − N(S) + b0(S). (1-7) 



14                                               Structural Mechanics: Graph and Matrix Methods 

 

14

A formal proof is provided in Section 1.4.7.  

As an example, the selected tree T and four fundamental cycles of S are illustrated 
in Figure 1.12. 
 

S T

C C1 2

C C3 4

 

Fig. 1.12   A graph S and a fundamental cycle basis of S. 

 

1.4.6   FUNDAMENTAL CUTSET BASES 

A basis can be constructed for the cutset space of a graph S. Consider the tree T 
and its cotree T∗. The subgraph of S consisting of T∗ and any member of T 
(branch) contains exactly one cutset known as a fundamental cutset. The set of 
cutsets obtained by adding branches of T to T∗, one at a time, forms a basis for the 
cutset space of S, known as a fundamental cutset basis of S. The cutset rank (rank 
of S) is the number of cutsets in a basis for the cutset space of S, which is given by  

 ρ(S) = N(S) − 1, (1-8) 

and for a graph with b0(S) components: 

 ρ(S) = N(S) − b0(S). (1-9) 

A formal proof is provided in Section 1.4.7. 

A graph S and a fundamental cutset basis of S are shown in Figure 1.13. A branch 
of the tree subdivides the nodes of the tree into two subsets. The members of a 
cutest should have one end in each subsets. 
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 (a) A graph S.              (b) A tree T of S.         (c) Cotree T* of T. 

C*

*C *C *C

*C

*C

1 2

3

4 5 6

 

Fig. 1.13   A graph S and a fundamental cutset basis of S. 

1.4.7  DIMENSION OF CYCLE AND CUTSET SUBSPACES 

Consider T as a spanning tree of a connected graph S with N nodes and M 
members. The branches of T are denoted by b1,b2, …, bN-1 and the chords by c1,c2, 
… ,cM−N+1. Let Ci and iC′  refer to the fundamental cycle and the fundamental 
cutset with respect to ci and bi , respectively. 

Since each fundamental cycle contains exactly one chord, and this chord is present 
in no other fundamental cycle, therefore the fundamental cycles C1, C2, … ,CM−N+1  
are independent. Using a similar reasoning for cutsets, it becomes obvious that all 
the fundamental cutsets 1C′ , 2C′ , … , 1NC −′ are also independent. 

Now we need to prove that every subgraph in cycle (cutset) subspace of S can be 
expressed as a ring sum of Ci ( iC′ ). For this purpose consider any subgraph C in 
the cycle space of S. Let C contain the chords ci1,ci2,…,cir. Let C′ denote the ring 
sum of the fundamental cycle Ci1,Ci2,…,Cir. Obviously the chords ci1,ci2,…,cir are 
present in C′ , and C′ contains no other chord of the T. Since C also contains these 
chords and no others, C′ ⊕ C contains no chords. 
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Now it is claimed that C′ ⊕ C is empty. If this is not true, then by the preceding 
arguments, C′ ⊕ C contains only branches and has no cycle. On the other hand, 
being a ring sum of cycles, C′ ⊕ C is a cycle of the union of member-disjoint 
cycles. Therefore the assumption that C′ ⊕C is not empty leads to a contradiction. 
Hence C′ ⊕ C is empty. This implies that C = C′ = Ci1⊕ Ci2 ⊕ … ⊕ Cir , i.e. every 
subgraph in the cycle space of S can be expressed as a ring sum of the 
fundamental cycles. 

In a similar manner it can be proved that every subgraph in the cutset subspace of 
S can be expressed as a ring sum of the fundamental cutsets. 

The following fact can now be concluded: 

1. The fundamental cycles with respect to a spanning tree of S constitute a basis 
for the cycle subspace of S, and therefore the dimension of the cycle subspace of S 
is equal to M−N+1.  

2. The fundamental cutsets with respect to a spanning tree of S constitute a basis 
for the cutset subspace of S, and therefore the dimension of the cutset subspace of 
S is equal to N−1. 

For graphs which are not connected, spanning forest will replace the spanning tree, 
and the dimensions for cycle subspace and cutset subspace will then be nullity of S 
= b1(S) = M−N+b0(S) and rank of S = ρ(S) = N−b0(S), respectively. Here, b0(S) is 
the number of components of S.  

1.4.8  ORTHOGONALITY PROPERTY 

Two vectors are called orthogonal if their scalar product is zero. It can be shown 
that a vector is a cycle set (cutset) vector, if and only if it is orthogonal to every 
vector of a cutset (cycle set) basis. Since the cycle set and cutset spaces of a graph 
S containing M(S) members are both subspaces of the M(S)-dimensional space of 
all vectors which represent subsets of the members, therefore the cycle set and 
cutset spaces are orthogonal components of each other. 

 

1.5   MATRICES ASSOCIATED WITH A GRAPH 

Matrices play a dominant role in the theory of graphs and in particular in its 
applications to structural analysis. Some of these matrices conveniently describe 
the connectivity properties of a graph and others provide useful information about 
the patterns of the structural matrices, and some reveal additional information 
about transformations such as those of equilibrium and compatibility equations. 
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In this section various matrices are studied which reflect the properties of the 
corresponding graphs. For simplicity, all the graphs are assumed to be connected, 
since the generalization to non-connected graphs is trivial and consists of 
considering the direct sum of the matrices for their components. 

1.5.1   MATRIX REPRESENTATION OF A GRAPH 

A graph can be represented in various forms. Some of these representations are of 
theoretical importance, others are useful from the programming point of view 
when applied to realistic problems. In this section six different representations of a 
graph are described. 

Node Adjacency Matrix: Let S be a graph with N nodes. The adjacency matrix A 
is an N×N matrix in which the entry in row i and column j is 1 if node ni  is 
adjacent to nj , and is 0 otherwise. This matrix is symmetric and the row sums of A 
are the degrees of the nodes of S. 

The adjacency matrix of the graph S, shown in Figure 1.14, is a 5×5 matrix as: 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
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0  1  1  0  0
1  0  1  1  0
1  1  0  1  1
0  1  1  0  1
0  0  1  1  0
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(1-10) 
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Fig. 1.14   A graph  S. 

It can be noted that A is a symmetric matrix of trace zero. For two isomorphic 
graphs S and S', the adjacency matrix A of S can be transformed to A' of S' by 
simultaneous permutations of the rows of A. The (i,j)th entry of A2 shows the 
number of walks of length 2 with ni and nj as end nodes. Similarly, the entry in the 
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(i,j) position of Ak  is equal to the number of walks of length k with ni and nj as 
end nodes. The polynomial,  

)det()( AI −λ=λφ ,                                       (1-11) 

is called the characteristic polynomial of S. The collection of N(S) eigenvalues of 
A is known as the spectrum of S. Since A is symmetric, the spectrum of S consists 
of N(S) real numbers. The sum of eigenvalues of A is equal to zero. The 
eigenvectors of A are orthogonal. 

Node-Member Incidence Matrix: Let S be a graph with M members and N 
nodes. The node-member incidence matrix B  is an N×M matrix in which the 
entry in row i and column j is 1 if node ni is incident with member mj, and is 0 
otherwise. As an example, the node-member incidence matrix of the graph in 
Figure 1.14 is a 5×7 matrix of the form:  

 

⎥
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⎥

⎦

⎤

⎢
⎢
⎢
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⎢
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⎣

⎡

=

0  1   0   0    0  1 0  
1  1   1   0    0  0 0  
0  0   1   1    0  1 1  
1  0   0   1    1  0 0  
0  0   0   0    1  0 1 
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7654321

n
n
n
n
n

mmmmmmm             

B
 

 

 
(1-12) 

Obviously, the pattern of an incidence matrix depends on the particular way that 
its nodes and members are labelled. One incidence matrix can be obtained from 
another by simply interchanging rows (corresponding to relabelling the nodes) and 
columns (corresponding to relabelling the members). 

The incidence matrix B  and the adjacency matrix A of a graph S are related by, 

 ,t VABB +=  (1-13) 

where V is a diagonal matrix of order N(S), known as the degree matrix,  whose 
typical non-zero entry vii is the valency of the node ni of S for i=1, ... ,N(S).  

The rows of B  are dependent and one row can arbitrarily be deleted to ensure the 
independence of the rest of the rows. The node corresponding to the deleted row is 
called a datum (reference) node. The matrix obtained after deleting a dependent 
row is called an incidence matrix of S and it is denoted by B. 

Although A and B are of great theoretical value, however, the storage 
requirements for these matrices are high and proportional to N×N and M×(N−1), 
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respectively. In fact a large number of unnecessary zeros is stored in these 
matrices. In practice one can use different approaches to reduce the storage 
required, some of which are described in the following. 

Member List: This type of representation is a common approach in structural 
mechanics. A member list consists of two rows (or columns) and M columns (or 
rows). Each column (or row) contains the labels of the two end nodes of each 
member, in which members are arranged sequentially. For example, the member 
list of S in Figure 1.14 is: 

 

.
4 5  4   3  2   5   3
2  4  3   2  1   3   1

  n
n

j

i

7m6m5m4m3m2m1m                     

⎥
⎦
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⎢
⎣

⎡
=ML

 
 

(1-14) 

It should be noted that a member list can also represent orientations on members. 
The storage required for this representation is 2×M. Some engineers prefer to add 
a third row containing the member's labels, for easy addressing. In this case the 
storage is increased to 3×M. 

A different way of preparing a member list is to use a vector containing the end 
nodes of members sequentially; e.g. for the previous example this vector becomes: 

 (1,3 ; 3,5 ; 1,2 ; 2,3 ; 3,4 ; 4,5 ; 2,4 ). (1-15) 

This is a compact description of a graph; however, it is impractical because of the 
extra search required for its use in various algorithms.  

Adjacency List: This list consists of N rows and D columns, where D is the 
maximum degree of the nodes of S. The ith row contains the labels of the nodes 
adjacent to node i of S. For the graph S shown in Figure 1.14, the adjacency list is: 
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(1-16) 

The storage needed for an adjacency list is N×D. 

Compact Adjacency List:  In this list the rows of AL are continually arranged in 
a row vector R, and an additional vector of pointers P is considered. For example, 
the compact adjacency list of Figure 1.14 can be written as: 
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                                R = (2,3,1,3,4,6,2,4,5,2,3,5,3,4 ), 

 P = (1,3,6,10,13,15).                                        (1-17) 

P is a vector (p1, p2, p3, … ) which helps to list the nodes adjacent to each node. 
For node ni one should start reading R at entry pi and finish at pi+1 − 1. 

An additional restriction can be put on R, by ordering the nodes adjacent to each 
node ni in ascending order of their degrees. This ordering can be of some 
advantage, an example of which is nodal ordering for bandwidth optimisation. The 
storage required for this list is 2M + N + 1. 

1.5.2   CYCLE BASES MATRICES 

The cycle-member incidence matrix C  of a graph S, has a row for each cycle or 
hinged cycle and a column for each member. An entry ijc  of C  is 1 if cycle Ci 
contains member mj and it is 0 otherwise. In contrast to the node adjacency and 
node-member incidence matrix, the cycle-member incidence matrix does not 
determine a graph up to isomorphism; i.e. two totally different graphs may have 
the same cycle-member incidence matrix. 

For a graph S there exists 12 )S(b1 −  cycles or hinged cycles. Thus C  is a 
( 12 )S(b1 − )×M matrix. However, one does not need all the cycles of S, and the 
elements of a cycle basis are sufficient. For a cycle basis, a cycle-member 
incidence matrix becomes a b1(S)×M matrix, denoted by C, known as the cycle 
basis incidence matrix of S. As an example, matrix C for the graph shown in 
Figure 1.14, for the following cycle basis, 

  C1 = (m1 , m3 , m4 ) 

  C2 = (m2 , m5 , m6 ) 

  C3 = (m4 , m5 , m7 ) 

is given by:  

 

.
1   0   1   1   0    0   0
0   1   1   0   0    1   0
0   0   0   1   1     0   1 
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(1-18) 



CHAPTER 1 Basic Concepts and Definitions                                                      21 

 

21

The cycle adjacency matrix D = CCt – W is a b1(S)×b1(S) matrix, each entry dij of 
which is 1 if Ci and Cj have at least one member in common, and it is 0 otherwise. 

 For the above example, 
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(1-19) 

where W is a diagonal matrix, in which a typical non-zero entry wii is the length of 
the cycle Ci. The trace of CCt is equal to the total length of the cycles in the basis. 

An important theorem can now be proved which is based on the orthogonality 
property mentioned in Section 1.4.8. 

Theorem: Let S have incidence matrix B and a cycle basis incidence matrix C. 
Then: 

 CBt = 0 (mod 2). (1-20) 

Proof:   Consider the ith row of C and the jth column of Bt, which is the jth row of 
B. The rth entry in these two rows are both non-zero if and only if mr is in cycle Ci 
and is incident with nj. If mr is in Ci, then nj is also in Ci, but if nj is in the cycle, 
then there are two members of Ci incident with nj so that the (i,j)th entry of CBt is 
1+1 = 0(mod 2), and this completes the proof. 

Matrix C for a fundamental cycle basis with special labels for its tree members 
and chords, finds a particular pattern. Let S have a tree T whose members are 
M(T) = (m1, m2, ... ,mp) and a cotree for which M(T*) = (mp+1, mp+2, …mp+M(S)). 
Then there is a unique fundamental cycle Ci in S − M(T*) + mi , p+1 ≤ i ≤ M(S) 
and this set of cycles forms a basis for the cycle space of S. As an example, for the 
graph S of Figure 1.12 (page 14) whose members are labelled as shown in Figure 
1.15, the fundamental cycle basis consists of:  

  C1 = (m1, m2, m7 )  C2 = (m2, m3, m8 )  

  C3= (m1, m4, m9, m5, m2 ), C4 = (m2, m5, m10, m6, m3 ). 

The corresponding C for the selected tree T is denoted by C0 and has the 
following form:  
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Fig. 1.15   A graph and its tree members. 

1.5.3   CUTSET BASES MATRICES 

The cutset-member incidence matrix *C for a graph S, has a row for each cutset of 

S and a column for each member. An entry *
ijc  of *C  is 1 if cutset *

iC  contains 

member mj and it is 0 otherwise. This matrix like C  does not determine a graph 
completely. Independent rows of *C  for a cutset basis, denoted by C*, form a 

matrix known as a cutset basis incidence matrix, which is a ρ(S)×M matrix, ρ(S) 
being the rank of graph S. As an example, C* for the cutset of Figure 1.13 with 
members labelled as in Figure 1.15, is given below: 
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The cutset adjacency matrix t∗∗∗ = CCD  is a ρ(S)×ρ(S) matrix defined 
analogously to cycle adjacency matrix D. 

For a fundamental cutset basis with appropriate labelling of the members in T and 
T*, the particular pattern of C* becomes: 

[ ]*
c

*
0  

1000100000
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0100001000
1010000100
1111000010
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CIC =
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From the orthogonality condition, 0CC =t*
00 , hence: 

 
[ ] . t*

c
T 0C
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⎡  

(1-24) 

:in resulting , )2(mod  Hence t
cT 0CC =+ ∗   

 t*
cT CC = . (1-25) 

Therefore, for a graph having C0, one can construct *
0C  and vice versa.  

There exists a very simple basis for the cutset space of a graph, which consists of 
N−1 cocycles of S. As an example, for the graph of Figure 1.14, considering n5 as 
a datum node, we have,  

 

,

1   1   1   0   0   0   0 
0   0   1   1   0   1   1 
1   0   0   1   1   0   0 
0   0   0   0   1   0   1 

*

7654321 mmmmmmm          

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=C
 

 

(1-26) 

 
which is the same as the incidence matrix B of S. The simplicity of the 
displacement method of structural analysis is due to the existence of such a simple 
basis. 
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1.6   DIRECTED GRAPHS AND THEIR MATRICES 

An oriented or directed graph is a graph in which each member is assigned an 
orientation. A member is oriented from its initial node to its final node, as shown 
in Figure 1.16(a). The initial node is said to be positively incident on the member 
and the final node negatively incident, as shown in the Figure: 
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                         (a)                             (b)                                 (c) 

Fig. 1.16   An oriented member, a directed graph and a directed tree. 

The choice of orientation of members of a graph is arbitrary; however, once it is 
chosen, it must be retained. Cycles and cutsets can also be oriented as shown in 
Figure 1.16(b). 

As an example, m7 is positively oriented in cycle Ci, and m10 is negatively oriented 
in cutset *

iC . 

All the matrices B , B, C and C* can be defined as before, with the difference of 
having +1, −1 and 0 as entries, according to whether the member is positively, 
negatively and zero incident with a cutset or a cycle. 

As an example, for graph S in Figure 1.16(b) the matrix B with n1 as datum node 
is formed: 
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Consider a tree as shown in Figure 1.16(c). The corresponding cycle basis 
incidence matrix can be written as: 
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Obviously
,   

BCt = CBt = 0(mod 2), (1-29) 

 
with a similar proof as that of the non-oriented case. 

A cutset-member incidence matrix is similarly obtained as:  
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           (1-30) 

It can easily be proved that:  

 t*
cT CC −= . (1-31) 

 

1.7   GRAPHS ASSOCIATED WITH MATRICES 

Matrices associated with graphs are discussed in the previous sections. Sometimes 
it is useful to consider the reverse of this process and think of the graph associated 
with an arbitrary matrix H. Such a graph has a node associated with each row of 
the matrix and if hij is non-zero, then there is a connecting member from node i to 
node j. In the case of a symmetric matrix, there is always a connection from i to j 
whenever there is one from j to I ; therefore one can simply use undirected 
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members. Two simple examples are illustrated in Figure 1.17 and Figure 1.18. The 
directed graph associated with a non-symmetric matrix is usually called a digraph 
and the word graph is used for the undirected graph associated with a symmetric 
matrix: 
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Fig. 1.17   A non-symmetric matrix H and its associated digraph. 
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Fig. 1.18   A symmetric matrix H and its associated graph. 

For H to be viewed as the adjacency matrix, due to the presence of diagonal 
entries, one loop should be added to each node. However, since the structural 
models have always non-zero diagonal entries and contain no loops, this addition 
is disregarded. 

With a rectangular matrix E a bipartite graph S = (A,B) can be associated. For 
each row of E a node of A and with each column of E a node of B is associated. 
Two nodes of A and B are connected with a member of S if eij is non-zero. An 
example of this is shown in Figure 1.19. 
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Fig. 1.19   A rectangular matrix E and its associated bipartite graph. 

A weighted bipartite graph can be defined for any m×n rectangular matrix H. The 
nodes r1,r2,…,rm and nodes c1,c2,…,cn of the graph correspond to rows and 
columns of H, respectively. If hij ≠ 0, then ri is joined to cj by a member whose 
weight is hij. 

 

1.8  PLANAR GRAPHS - EULER´S POLYHEDRA FORMULA 

Graph theory and properties of planar graphs, were first discovered by Euler in 
1736. After 190 years Kuratowski found a criterion for a graph to be planar. 
Whitney developed some important properties of embedding graphs in the plane. 
MacLane expressed the planarity in terms of the graph´s cycle basis. In this 
section some of these criteria are studied, and Euler´s polyhedra formula is proven. 

1.8.1   PLANAR GRAPHS 

A graph S is called planar if it can be drawn (embedded) in the plane in such a 
way that no two members cross each other. As an example, a complete graph K4 
shown in Figure 1.20 is planar since it can be drawn in the plane as shown: 

 
          (a) K4.                      (b) Planar drawings of K4. 

Fig. 1.20   K4  and two of its drawings. 

On the other hand K5, Figure 1.21, is not planar, since every drawing of K5 
contains at least one crossing. 

 
     (a)  K5.                  (b) Two drawings of K5 with one crossing. 
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Fig. 1.21   K5  and two of its drawings. 

Similarly K3,3, Figure 1.22, is not planar, as illustrated: 

 
                    (a)  K3,3.           (b) Two drawings of K3,3  with one crossing. 

Fig. 1.22   K3,3  and its drawings. 

A planar graph S drawn in the plane divides the plane into regions all of which are 
bounded and only one is unbounded. If S is drawn on a sphere, all the regions will 
be bounded; however, the number of regions will not change. The cycle bounding 
a region is called a regional cycle. Obviously the sum of the lengths of regional 
cycles is twice the number of members of the graph. 

There is an outstanding formula that relates the number of regions, members and 
nodes of a planar graph, in the form,  

R(S) − M(S) + N(S) = 2, 

where R(S), M(S) and N(S) are the numbers of regions, members and nodes of 
planar graph S, respectively. This formula shows that for different drawings of S 
in the plane, R(S) remains constant. 

Originally the above relationship was given for polyhedra, in which R(S), M(S) 
and N(S) correspond to faces, edges and corners of a polyhedron, respectively. 
However, the theorem can easily be expressed in graph-theoretical terms as 
follows. 

Theorem (Euler [45]):  Let S be a connected planar graph. Then: 

 R(S) − M(S) + N(S) = 2. (1-32) 

Proof:  For proof, S is reformed in two stages. In the first stage, a spanning tree T 
of S is considered in the plane for which R(T) − M(T) + N(T) = 2. This is true 
since R(T) = 1 and M(T) = N(T) − 1. In second stage chords are added one at a 
time. Addition of a chord increases the number of members and regions each by 
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unity, leaving the left hand side of Eq. (1-32) unchanged during the entire process, 
and the result follows. 

1.8.2   THEOREMS FOR PLANARITY 

In order to check the planarity of a graph, different approaches are available which 
are based on the following theorems. These theorems are only stated and the 
reader may refer to textbooks on graph theory for proofs. 

Theorem (Kuratowski [148]): A graph S is planar if and only if it has no subgraph 
contractible to K5 or K3,3 . 

Contracting a member mk = (ni,nj) is an operation in which the member is removed 
and ni is identified with nj so that the resulting node is incident to all members 
(other than mk) that were originally incident with ni or nj. If a graph S′ can be 
obtained from S by succession of member contractions, then S is contractible to 
S′. The process of the contraction of a member (ni,nj) of a graph is shown in 
Figure 1.23(a), and the contraction of the Petersen graph to K5 is illustrated in 
Figure 1.23(b). 

nn i j in jn n jn i,
mk

 

(a) Contraction of a member mk. 

               
(b) Contraction of the Petersen graph to K5. 

Fig. 1.23   The contraction of a member in a graph. 
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Theorem (MacLane [167]): A connected graph is planar if and only if every block 
of S with at least three nodes has a cycle basis, )S(1b21 C,...,C,C  and one additional 
cycle C0, such that every member is contained in exactly two of these b1(S)+1 
cycles. 

A block is a maximal non-separable graph, and a non-separable graph is a graph 
that has no cut-points. A cut-point is a node whose removal increases the number 
of components and a bridge is such a member. In Figure 1.24, a graph and its 
blocks are illustrated: 

bridge cut-point

 

Fig. 1.24   A graph and its blocks. 

Definitions: A graph S* is a dual graph of a graph S if there is a 1-1 
correspondence between the members of S* and those of S, such that a set of 
members in S* is a cycle vector of S* if and only if the corresponding set of 
members in S is a cutset vector of S. 

Theorem (Whitney [250]) - A graph is planar if and only if it has a combinatorial 
dual. 

 

                (a) A planar graph S.                 (b) The dual graph of S. 

Fig. 1.25   A planar graph and its dual. 
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For a connected planar graph S, the dual graph S* is constructed as follows: 
To each region ri of S there is a corresponding node ∗

ir  of  S* and to each member 

mj of S there is a corresponding member ∗
jm  in S*, such that if the member mj 

occurs on the boundary of two regions r1 and r2, then the member ∗
jm  joins the 

corresponding nodes ∗
1r  and ∗

2r  in S*, Figure 1.25. 

 

1.9   MAXIMAL MATCHING IN BIPARTITE GRAPHS 

1.9.1   DEFINITIONS 

As defined before, a graph is bipartite if its set of nodes can be partitioned into two 
sets A and B, such that every member of the graph has one end node in A and 
other in B. Such a graph is denoted by S = (A,B). A set of members of S is called a 
matching if no two members have a common node. The size of any largest 
matching in S is called the matching number of S, denoted by ψ(S). A subset N'(S) 
⊆ N(S), is the node cover of S, if each member of S has at least one end node in 
N'(S). The cardinality of any smallest node cover, denoted by τ(S), is known as the 
node covering number of S. 

1.9.2   THEOREMS ON MATCHING 

In this section, three theorems are stated, and the proofs may be found in the book 
by Lovasz and Plumner [164]: 

Theorem 1 (König [141,142]): For a bipartite graph S, the matching number ψ(S) 
is equal to the node covering number τ(S). 

Theorem 2 (Hall [69]): Let S = (A,B) be a bipartite graph. Then S has a complete 
matching of A into B if and only if  |Γ(X) | ≥ |X| for all X ⊆ A. 

Γ(X) is the image of X, i.e. those elements of B which are connected to the 
elements of X in S. Figure 1.26(a) shows a bipartite graph for which matching 
exists and Figure 1.26(b) illustrates a case where complete matching does not 
exist, because X = (a1, a2) are matched to b1, i.e. |Γ(X)| ≤ |X|: 
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A B A B

(a) (b)

a

a

b1

2

1

 
Fig. 1.26   Matching in bipartite graphs. 

A perfect matching is a matching which covers all nodes of S. 

Theorem 3 (Frobenius [53]): A bipartite graph S = (A,B) has a perfect matching if 
and only if |A| = |B| and for each X ⊆ A, |Γ(X) | ≥ |X|. 

 

(a) Perfect matching exists.       (b) Perfect matching does not exist. 

Fig. 1.27   Perfect matching in bipartite graphs. 

This is also known as the marriage theorem. Figures 1.27(a) and (b) show cases 
when a perfect matching exists and does not exist, respectively. 

Therefore Frobenius´s theorem characterizes those bipartite graphs which have a 
perfect matching. Hall´s theorem characterizes those bipartite graphs that have a 
matching of A into B. König´s theorem gives a formula for the matching number 
of a bipartite graph. 
 

1.9.3   MAXIMUM MATCHING 
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Let M be any matching in a bipartite graph S = (A,B). A path P is called an 
alternating path with respect to M, or an M-alternating path if its members 
(edges) are alternately chosen from the matching M and outside M. A node is 
exposed (unmatched, not covered) with respect to matching M if no member of M 
is incident with that node. An alternating tree relative to the matching, is a tree 
which satisfies the following two conditions: first, the tree contains exactly one 
exposed node from A, which is called its root, second, all paths between the root 
and any other node in the tree are alternating paths. 

As an example, in Figure 1.28(a) the path a1b1a3b3a4 is an alternating path with 
respect to the matching shown in bold lines; a2, b2, a4 and b4 are exposed nodes. 

b

b

b

b

a

a

a

a

1

2

3

4 4

3

2

1

b

b

b

b

4

3

2

1 1

2

3

4a

a

a

a

 

(a) An arbitrary matching.                     (b) An augmented matching. 

Fig. 1.28   Operation for maximum matching. 

An M-alternating path joining two exposed nodes is called an M-augmenting path. 
For every such path the corresponding matching can be made larger by discarding 
the members of P ∩ M and adding those of P − M, where P is an M-alternating 
path b2a1b1a3b3a4, Figure 1.28(b). Thus, if S contains any M-alternating path P 
joining two exposed nodes, then M can not be a maximum matching, for one can 
readily obtain a larger matching M´ by discarding the members of P ∩ M and 
adding those of P − M. 

Theorem 4 (Berge [13-14]): Let M be a matching in a graph S. Then M is a 
maximum matching if and only if there exists no augmenting path in S relative to 
M. 

The above result provides a method for finding a maximum matching in S. The 
computational procedure for construction of a maximum matching begins with 
considering any feasible matching, possibly the empty matching. Each exposed 
node of A is made the root of an alternating tree, and nodes and members are 
added to the trees by means of a labelling technique. Eventually, the following two 
cases must occur: either an exposed node in B is added to one of the trees, or else 
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it is not possible to add more nodes and members to any of the trees. In the former 
case, the matching is augmented and the formation of trees is repeated with respect 
to the new matching. In the latter case, the trees are said to be Hungarian and the 
process is terminated. 

As an example, consider the matching shown in Figure 1.29(a), in which bold 
lines represent members in the matching. Alternating trees are constructed, with 
the exposed nodes a1 and a5 of A as roots, as shown in Figure 1.29(b). An 
augmenting path is found, as indicated in the Figure. Naturally, several different 
sets of alternating trees could have been constructed. For example, the tree rooted 
at node a1 could have contained the member (a2,b3). 
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                 (a)   A bipartite graph S.                 (b)   Alternating trees. 

Fig. 1.29   A bipartite graph and its alternating tree. 

Augmented matching is shown in Figure 1.30. When the alternating tree of Figure 
1.31 is used for the augmented matching, it becomes Hungarian. 
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Fig. 1.30   Augmented matching. 

a b a b a b1 2 2 3 5 5 4a
 

Fig. 1.31   Alternating tree for augmented matching. 
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BIPARTITE MATCHING ALGORITHM 

Let X be any matching, possibly the empty matching of a bipartite graph S = 
(A,B). No nodes are labelled. 

Step 1 (labelling): 

1.1 Give the label ∅ to each exposed node in A. 

1.2 If there are no unscanned labels, go to Step 3. Otherwise, find a node i with 
an unscanned label. If i ∈ A, go to Step 1.3; if i ∈ B, go to Step 1.4. 

1.3 Scan the label on node i (i∈A) as follows: for each member (i,j) ∉ X 
incident to node i, give node j the label "i", unless node j is already 
labelled.  Return to Step 1.2. 

1.4 Scan the label on node i (i∈B) as follows: if node i is exposed, go to Step 2. 
Otherwise, identify the unique member (i,j)∈X incident to node i and give 
node j the label "i". Return to Step 1.2. 

Step 2 (Augmenting): 

An augmenting path has been found, terminating at node i (identified in Step 1.4). 
The nodes preceding node i in the path, are identified by backtracking. That is, if 
the label on node i is "j", the second-to-last node in the path is j. If the label on 
node j is "k", the third-to-last node is k, and so on. The initial node in the path has 
the label "∅". Augment X by adding to X all members in the augmenting path that 
are not in X and removing those which are in X. Remove all labels from nodes. 
Return to Step 1.1. 

Step 3 (Hungarian Labelling): 

The labelling is Hungarian, no augmenting path exists, and the matching X is of 
maximum cardinality. 

For further study, the reader may refer to the original paper of Hopcroft and Karp 
[80] or Lawler [157]. An algorithm using a different approach may be found in 
Ref. [6]. 
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EXERCISES 

1.1 In the following graph, which members are incident with node 3 (identify 
with their end nodes)? Which nodes are adjacent to node 4? What is the degree of 
node 2? 

5

6

1

4
2

3

 

1.2 Are the following graphs isomorphic? 

1

2

3
4

5

6
1 2

65

3 4

 

1.3 Draw a tree, a spanning tree and an SRT rooted at O for the following 
graph. Use O′  as the root of a second SRT and compare its length and width with 
those of the first one.  

O O'  

1.4 What types of graph are the following? 
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1.5 List all the cycles of the following graph: 

 

1.6    Prove that for a planar graph embedded on a sphere with all triangular faces, 
M(S) = 3N(S) − 6. 

1.7 Find a fundamental cycle basis of the following graph using an arbitrary 
spanning tree: 

O

O'  

1.8 In the above example use two SRTs rooted at O and O′  and compare the 
length of the corresponding fundamental cycle bases. 

1.9 Write the adjacency and member-node incidence matrices of the graphs in 
Exercise 1.2. Use an arbitrary node and member numbering. What can you say 
about the resulting matrices? 

1.10  Write C, C*, C0 and ∗
0C  matrices for the following graph and examine the 

orthogonality property: 
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1.11  Identify the planar graphs in the following figure: 

 

            (a)                       (b)                          (c)                              (d) 

1.12  Prove that K5 and K3,3 are not planar. 

1.13 Euler’s formula as in Eq. (1-32) fails for disconnected graphs. If a planar 
graph S has b0(S) components, how can the formula be adjusted? 

1.14  Find a maximal matching for the following bipartite graphs. Which one is 
complete and which one is a perfect matching? 

 

(a)                                               (b) 

1.15  Why is there no complete matching for the following bipartite graphs? 



CHAPTER 1 Basic Concepts and Definitions                                                      39 

 

39

 

        (a)                                            (b)  


