
CHAPTER 10 

A Graph-Theoretical Approach 

for Configuration Processing 
 

10.1   INTRODUCTION  

For a large system, configuration processing is one of the most tedious and time-
consuming parts of the analysis. Different methods have been proposed for 
configuration processing and data generation, among which the formex algebra of 
Nooshin [180,181] is perhaps the most general and powerful tool for this purpose. 
Behravesh et al. [9] employed set theory and showed that some concepts of set 
algebra can be used to build up a general method for describing the 
interconnection patterns of structural systems. There are many other references on 
the field of data generation; however, most of them are prepared for specific 
classes of problem. For example, many algorithms have been developed and 
successfully implemented on mesh or grid generation, a complete review of which 
may be found in a paper by Thacker [232] and a book by Thomson et al. [234]. 

In this chapter, a graph-theoretical approach is presented for configuration 
processing, which uses similar concepts developed for the set theoretical and 
formex algebraic methods of Refs. [9,180,181], with the difference that it avoids 
the use of new terminology, and employs the most elementary definitions of graph 
theory. Four basic functions are presented here, which consist of translation, 
rotation, reflection and projection functions. The algebraic representations 
described here not only provide the topological properties of a structure, but also 
provide simple means for obtaining the geometrical properties of structures using 
simple transformations. Examples of skeletal structures are included to illustrate 
the simplicity of the concepts presented in this chapter. The application of the 
transformations is extended to the generation of finite element meshes.  
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10.2 ALGEBRAIC REPRESENTATION OF A GRAPH 

Various algebraic representations of graphs were studied in Chapter 1. These 
consisted of matrices such as the node-member incidence matrix, adjacency 
matrix, member list, and in particular the following compact member list, 
containing the end nodes of the members of a graph in a single row. 

As an example, the interconnection pattern of a graph S, shown in Figure 10.1 can 
be represented by, 

(1,2 ; 1,3 ; 2,3 ; 3,4), 

or, in a form compatible with the notation used in this chapter: 

{[1,2],[1,3],[2,3],[3,4]}. 

1

2 4

1 3 4

2 3
 

Fig. 10.1   A graph S. 

In this scheme, effectively a set of members is specified; however, the common 
node numbers provide the interconnections of the members.  

All these representations specify the corresponding graph up to isomorphism. In 
structural engineering, however, a structural model should uniquely be 
represented. Therefore some additional information must be provided. As an 
example, the coordinates of nodes in Euclidean space can be given. In such a case, 
however, the geometry of the structure will also be involved. To have only the 
connectivity, a weaker formulation will be sufficient. For this purpose, one may 
use an integer coordinate system for specifying the interconnection of S. Further 
simplicity can be achieved if a rectilinear grid system is employed. Such a system 
may be a 1, 2 or 3-dimensional coordinate system, an example of which is 
depicted in Figure 10.2. 
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Fig. 10.2   A 2-dimensional rectilinear grid system. 

From now on, any member of the set of such systems will be referred to as an 
integer coordinate system (ICS). An ICS has grid lines and grid points, as shown 
in Figure 10.2. 

A single node of a graph will be shown by a grid point. A member of a graph will 
be specified by its end nodes. As an example, 

n1 = (2,1) 

represents the node n1, and 

m1 = [(2,2),(4,3)] 

is an algebraic representation of the member m1, as illustrated in Figure 10.2. This 
is a directed member, and, if no orientation is assigned, then one can represent m1 
also as, 

m1 = [(4,3),(2,2)], 

i.e. an arbitrary order can be used for the end nodes of m1. 

In general, it is preferable to use the first quarter of an ICS in order to have 
positive integers as the coordinates of the nodes. However, if for some reasons the 
complete ICS is preferred, then both positive and negative values will be present. 
As an example, the algebraic representation of m1, which is a symmetric member 
with respect to I2, is given as: 

m1 = [(−1,2),(1,2)]. 
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A subgraph (or a graph) can also be represented in an ICS by specifying its 
members, and the integer coordinates of its end nodes, Figure 10.3. As an 
example, the subgraph S1 can be represented as: 

S1 = {[(2,3),(3,2)],[(3,2),(2,1)],[(2,1),(1,1)]}. 
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Fig. 10.3   A member and a subgraph in an ICS. 

To simplify the notation and the language, from now on we will not distinguish 
between a graph (or subgraph) and the corresponding algebraic representation. 

It is interesting to note the difference between the above representation and the 
previous scheme which specifies the graph up to isomorphism; i.e. 

S1 = {[1,2],[2,3],[3,4]}. 

In fact, the integer coordinates of each node guarantee the unique representation of 
S1. 

An algebraic representation such as the one above allows one to assign weights 
with nodes, members, and subgraphs of a graph. These weights can be specified 
loads assigned to the nodes, relative stiffnesses associated with members, or group 
properties of substructures. This can be done in the same way that numbers were 
assigned to nodes, members and cycles of a graph in Chapter 1. However, in this 
chapter it is unnecessary to consider such factors, since only the interconnections 
of the structural models are of interest in configuration processing. 

10.3   REPRESENTATIONS OF OPERATIONS ON GRAPHS   
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10.3.1  ADDITION OF TWO SUBGRAPHS 

Consider a subgraph S1, which is joined to S2 through a member, as shown in 
Figure 10.4(a), resulting in S1 ∪ S2: 
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             S1          S2                  S1 ∪ S2      S1 ∩ S2 
                                        (a)                                                   (b) 

Fig. 10.4   Addition of two subgraphs. 

Representing S1 ∪ S2 in an ICS, one writes: 

S1 = {[(2,1),(2,3)],[(2,3),(1,2)],[(1,2),(2,1)]}, 

and 

S2 = {[(2,1),(3,2)],[(2,1),(2,3)],[(3,2),(2,3)]}. 

The algebraic structure of S1 ∪ S2 is obtained by omitting the repeated intersection 
of two subgraphs. Therefore, 

S1  S2 ={[(2,1),(2,3)],[(2,3),(1,2)],[(1,2),(2,1)],[(2,1),(3,2)],[(3,2),(2,3)]}, 

in which one [(2,1),(2,3)] is deleted in composition. From now on, such a 
representation will be denoted by S1 S2. If a series of compositions as,  

 i
m

1i
m321 SS...SSS

=
∪=∪∪∪∪ , (10-1) 

 
is performed, then the corresponding algebraic representation will be shown by a 
different summation sign, as the following, in order to emphasis the composition 
nature of the operation:  
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 S1  S2  ...  Sm = ∑ =
m

1i iS .  (10-2) 
In order to avoid the extra operation of deleting the algebraic representation of 
common members, composition may be considered through the common nodes 
only, i.e. S1 and S2 may be considered as illustrated in Figure 10.5. In this 
composition, S1 ∩ S2 contains no member, and the composition of two subgraphs 
is simplified and consists of simple addition of their algebraic representations. 

 
                              S1                    S2                    S1 ∪ S2            S1 ∩ S2 

Fig. 10.5   A simple composition. 

10.3.2  SUBTRACTION OF TWO SUBGRAPHS 

Consider a subgraph S1 as shown in Figure 10.6. Take S2 as the star of the node n2. 
A subgraph S1 – S2 is a graph containing the star of n4. This subtraction in 
algebraic form is very simple and contains the deletion of the members of the star 
of n2, i.e. for, 

S1 ={[(1,1),(3,1)],[(3,1),(3,3)],[(3,3),(1,3)],[(1,3),(1,1)]}, 

and S2 ={[(1,1),(3,1)],[(3,1),(3,3)]},  
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Fig. 10.6   Subtraction of two subgraphs. 

the algebraic representation of this subtraction is given by: 
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S1 – S2 ={[(3,3),(1,3)],[(1,3),(1,1)]}.  

Cut-outs frequently occur in structures. Sometimes, in order to keep the regularity 
of the structure, it is advantageous to generate the entire structural model and then 
subtract (delete) certain parts. This can be achieved by subtracting the stars within 
the cut-out. As an example, for S with cut-out shown in dashed lines (Figure 10.7), 
the main structure, Sm, can be formulated as: 

 Sm = S – ∑ =
4

1i i .n Star  (10-3) 
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Fig. 10.7   A plane grid with a cut-out. 

 

10.4   SPECIAL GRAPHS 

A null graph containing only isolated nodes, denoted by S0, can be represented by 
its nodes. As an example, the null graph S0 of Figure 10.8 can be represented as: 

S0 = {(1,1),(2,1),(3,1),(4,1),(1,2),(2,2),(3,2),(4,2),(1,3),(2,3),(3,3),(4,3)}. 
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Fig. 10.8   A null graph S0. 

As a second example, the null graph containing the isolated nodes n1, n2, n3 and n4 
of Figure 10.7 can be written as,  

S20 = {(2,2),(3,2),(2,3),(3,3)}, 

where S20 is the null graph of S2. Conversely S2 may be considered as Star (S20) in 
S, where 

 Star (S20) = i

)20S(N

1i
n Star

=
∪  where ni  ∈ S2, (10-4) 

and N(S20) is the number of isolated nodes of S20. Therefore, in Figure 10.7, the 
grid with the cut-out can be represented as Sm = S1 – Star (S20).  

The null graph, or the null graph of a graph, plays an important role in structural 
analysis. As an example, the null graph of a part of a structural model may 
represent the boundary nodes, or those nodes which are loaded in the structure; 
and therefore compact representation of such nodes is advantageous in data 
generation. The null graph of a graph Si will be denoted by Si0. 

A similar convention can be applied to a complete graph. Since in a complete 
graph, all the nodes are connected to each other by distinct members, one can 
specify only its null graph with an extra command to indicate the completeness of 
the graph. For example, COM (Sk0) can be used to refer to the complete graph Sk. 

 

10.5   SOME FUNCTIONS FOR CONFIGURATION PROCESSING 

Many practical structures have a regular and repeated pattern, which enables their 
generation using simple functions. As an example, S in Figure 10.9 can be 
generated by translating S1, shown in bold lines, in the I1 direction; i.e., if the 
coordinates of the nodes of S1 are each increased by 2 units, the adjacent subgraph 
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S2 will be obtained. A similar operation on S2 results in S3, and the same operation 

on S3 forms S4, completing the generation of i
4

1i
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=
∪= . 
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Fig. 10.9   A typical S1 for generating S by translation. 

A second example is depicted in Figure 10.10, in which S is generated by rotating 
a typical subgraph S1 shown in bold lines. Rotation about O by 90o leads to S2, 
and a similar operation on S2 results in S3, etc. Therefore, S = S1 ∪ S2 ∪ S3 ∪ S4 
can be easily generated. 

3

2

1

1 2 3 4

I

I
0

2

1

S1

O

 

Fig. 10.10   A typical S1 for generating S by rotation. 

An operation by means of which Sj is obtained from Si can be shown as, 

 Sj = φ | Si, (10-5) 
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where φ can be considered as a mapping of Si into Sj, or it may be taken as a 
function which defines the relationship between Si and Sj. The following functions 
are defined for φ: 

(a) If Sj = φ | Si, then Si = φ-1 | Sj, i.e. the inverse of function φ exists. 

(b) The identity function is supposed to map Si onto itself. This function is 
denoted by φ0: i.e. Si = φ0| Si. 

(c) Repeated application of φ on Si will be denoted by φr | Si, which means φ 
has been applied r times, and each time φ operates on the result of the 
previous step. 

(d) The composition of functions φm and φn is equivalent to φm+n. 

In the following, various functions and their significances are described, which in 
the main follow those of Ref. [180]. 

10.5.1   TRANSLATION FUNCTIONS 

A translation function operating on Si to produce Sj is denoted by, 

 Sj = φ | Si = TRAN (h,q)| Si, (10-6) 

in which h = 1, 2 and 3 depending on translation taking place along I1, I2 and I3, 
respectively. q is the number of integer units to be added to each coordinate of 
algebraic representation of Si in direction h. This operation can be stated as 
follows: 

Let a node of Si be denoted by (I1,I2,I3) and that of Sj be denoted by )I,I,I( 321 ′′′ . 
The function TRAN (h,q) maps the nodes of Si onto those of Sj  such that, for each 
node, 

 ii II =′   for  i=1,2,3  except  i=h,  

and hh II =′ + q.      (10-7) 

Obviously, q should be taken as an integer, if the new node is supposed to be a 
grid point. 

Example: Consider a graph S1 as shown in Figure 10.11. 
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Fig. 10.11   Subgraphs obtained by translations. 

S1 can be written as: 

S1 ={[(1,1),(2,1)],[(2,1),(2,2)]}. 

Similarly, S2 may be represented as: 

S2 = TRAN(1,4) | S1 ={[(5,1),(6,1)],[(6,1),(6,2)]}, 

Then S3 can be obtained from S2 by: 

S3 = TRAN(2,2) | S2 ={[(5,3),(6,3)],[(6,3),(6,4)]}. 

Composition of the above functions results in S3, when S1 is given, i.e. 

S3 = TRAN(2,2) | TRAN(1,4) | S1 ={[(5,3),(6,3)],[(6,3),(6,4)]}. 

Example: A simple rectangular grid is formulated. Consider a graph as shown in 
Figure 10.12. 
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Fig. 10.12   A rectangular grid obtained by pure translations. 
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Different units (subgraphs) can be considered for generation. Naturally, one 
should consider the smallest unit for which the translation functions can also be 
written in a simple form. Let: 

S1 ={[(1,1),(1,2)]} and S2 ={[(1,1),(2,1)]}. 

The members of the vertical edge of S containing S1 can be represented as:  

TRAN (2,0)|S1 = S1, TRAN (2,1)|S1 and TRAN (2,2)|S1. 

The above three members can collectively be shown as: 

∑ =
2

0j TRAN (2,j)| S1. 

Translation of the resulting subgraph in the I1 direction completes the formation of 
all the vertical members,i.e. 

SV = ∑ =
5

0i TRAN (1,i) | ∑ =
2

0j TRAN  (2,j) | S1, 

The horizontal members can be formed by a similar approach leading to: 

SH = ∑ =
3

0j TRAN (2,j) |
 
∑ =

4
0i TRAN (1,i) | S2. 

Naturally, S = SV + SH,  

S = ∑ =
5

0i TRAN (1,i) | ∑ =
2

0j TRAN (2,j) | {[(1,1),(1,2)]} + 

   ∑ =
3

0j TRAN (2,j) | ∑ =
4

0i TRAN (1,i) |
 
{[(1,1),(2,1)]}. 

As an alternative formulation, one may consider S1 ∪ S2 = S3 as a generating unit,   

S3 = {[(1,1),(1,2)],[(1,1),(2,1)]}. 

Then                     S4 = ∑
=

2

0j
TRAN (2,j) | ∑ =

4
0i TRAN (1,i) | S3, 

generating all members except the upper and right-hand side boundary members, 
which can be generated as: 
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S5 = TRAN (1,5) | ∑ =
3

0j TRAN (2,j) | S1 + TRAN (2,3) | ∑ =
4

0i TRAN (1,i) | S2. 

Therefore, S = S4 + S5 generates the entire model S. 

Translation functions have the following properties: 

1. TRAN (h1,q1) | TRAN(h2,q2) | Si = TRAN (h2,q2) | TRAN (h1,q1) | Si; i.e. 
 these functions are commutative. 

2. TRAN (h,q) −1 | Si = TRAN (h, −q)| Si. 

3. TRAN (h,q1) | TRAN (h,q2) | Si = TRAN (h,q1+q2) | Si.  

 Similarly, TRAN (h,q)k | Si = TRAN (h,kq) | Si. 

10.5.2  ROTATION FUNCTIONS 

This function rotates a subgraph Si with respect to a specified node to obtain Sj, 
and is denoted as: 

 Sj = ROT (h1,h2,q1,q2) | Si. (10-8) 

Let  (I1,I2,I3) be a typical node of Si and )I,I,I( 321 ′′′ be the integer coordinates of the 
nodes of Sj. The rotation function maps the nodes of Si onto those of Sj such that, 
for each node, 

 
i. of  valueremaining for the II and

,hifor    IqqI
,hifor    IqqI

ih3

21h122h

12h121h

=′
=+−=′
=−+=′

 (10-9) 

Obviously, the numbers q1 and q2 should be such that their sum and difference 
become integers, unless an even power of the function is used.  

Example: Consider S1 as shown in Figure 10.13. This subgraph can be 
represented as: 

S1 ={[(1,1),(2,1)],[(2,1),(2,2)]}. 
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Fig. 10.13   A subgraph S1 rotated to S2. 

For ROT (1,2,2,3), we have, 

S2 = ROT (1,2,2,3) | S1 ={[(4,2),(4,3)],[(4,3),(3,3)]}, 

which is depicted in Figure 10.13. 

The rotation function ROT (h1,h2,q1,q2) rotates Si through π/2 about an axis 
perpendicular to the Ih1 − Ih2 plane and intersects this plane at a point whose 
coordinates are q1 and q2. The sense of rotation is such that a rotation of Ih1 
through π/2 about the origin maps the positive side of Ih1 onto that of Ih2. ROT 
(h1,h2,q1,q2)k| Si represents the rotation of Si by kπ/2. 

For a general case, when the rotation is an arbitrary angle β, simple formulation 
can be made. Consider two points A(I1,I2) and )I,I(A 21 ′′′  as shown in Figure 10.14. 
The centre of rotation is taken as )q,q(O 21′ . The following relations are obvious: 

 
→→→

→→→

+=

+=

'A'O'OO'OA

A'O'OOOA  (10-10) 

Projecting the vectors OA and AO ′  on I1 and I2 axis, 

 
22

11
IsinLq
IcosLq

=α+
=α+

 (10-11) 
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where L is the length of AO′ , which is the same as AO ′′ , since rotation preserves 
the length. Using Eq. (10-10) and projecting the components of the vectors OA 
and AO ′ on I1 and I2 leads to: 

 
αβ−βα+=′=β+α+
βα−βα+=′=β+α+

cossinLcossinLqI)sin(Lq
sinsinLcoscosLqI)cos(Lq

222

111  (10-12) 

Combining Eq. (10-11) and Eq. (10-12) leads to: 

 
β−+β+−=′

β−−β−+=′

sin)qI(cos)qI(qI
sin)qI(cos)qI(qI

112222

221111  (10-13) 

Functions for a general rotation are obtained as: 

 
β+β−β+β−=′

β−β+β+β−=′

sinIcosIsinqcosqqI
sinIcosIsinqcosqqI

121222

212111  (10-14) 

Substituting β = 90° leads to the special case of Eq. (10-9). 
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Fig. 10.14   General rotation. 

Example: The graph model of a planar truss, as shown in Figure 10.15(a), can be 
generated using rotation functions as follows: 
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(a) The graph model S. 
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                        (b) S1 is rotated.                      (c) The subgraph of (b) is rotated. 
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                                (d) S3.     (e) S2 is rotated. 



CHAPTER 10  Configuration Processing                                                           325 

 

 

325

2

4

6

8

10

1

2

4

6 8

3

5

7

0 12

I

1

2

I

10

9

2

4

6

8

10

1

2

4

6 8

3

5

7

0 12

I

1

2

I

10

9

S4

 

        (f) The subgraph of (e) is rotated.                               (g) S4. 

Fig. 10.15   A planar truss generated by pure rotations. 

Consider               S1 = {[(4,1),(5,2)]}          and         S2 = {[(4,1),(6,1)]}.  

First S3 and S4, shown in Figures 10.14 (b and g), are formulated as: 

S3 = ∑ =
3

0k ROT (1,2,8,5)k | ∑ =
3

0j ROT (1,2,6,3)j | ∑ =
3

0i ROT (1,2,5,2)i

 
| S1, 

and S4 = ∑ =
3

0k ROT (1,2,8,5)k | ∑ =
8

6j ROT (1,2,j,3)2 | ROT(1,2,5,2)2

 
| S2.

  
Now, for the entire model S, we have: 

S = S3 + S4 

Rotation functions have the following properties: 

1. Rotation functions are not in general commutative, except for some special 
cases. 

2. For an integer k, ROT (h1,h2,q1,q2)4k|Si = Si; i.e.  ROT (h1,h2,q1,q2)4k is an 
identity function. 

3. The inverse of a rotation function is the cube of itself; i.e. ROT 
(h1,h2,q1,q2)-1| Si = ROT (h1,h2,q1,q2)3| Si. 
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10.5.3  REFLECTION FUNCTIONS 

This function reflects a subgraph Si, and finds Sj as: 

 Sj = REF (h,q) | Si , (10-15) 

Like the previous functions, a reflection function REF (h,q) maps nodes of Si onto 
those of Sj by the following rule: 

 ,hi  for  Iq2I hh =−=′   

and .s i emainingr   thefor II ii =′  (10-16) 

Obviously, 2q should be integer if the new coordinates are intended to be integers. 

Example:  Different reflections of S1 are illustrated in Figure 10.16: 

S1 = {[(2,1),(2,2)],[(2,2),(1,2)],[(1,2),(2,1)]}. 
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Fig. 10.16   Subgraphs generated by reflections. 

Now   S2 = REF (2,2.5) | S1 = {[(2,4),(2,3)],[(2,3),(1,3)],[(1,3),(2,4)]}, 

and   S3 = REF (1,3.5) | S1 = {[(5,1),(5,2)],[(5,2),(6,2)],[(6,2),(5,1)]}. 

Similarly,  S4 = REF (2,2.5) | S3 = {[(5,4),(5,3)],[(5,3),(6,3)],[(6,3),(5,4)]}. 

For a reflection function, Sj is the mirror image of Si with respect to a plane which 
is normal to the Ih axis and intersects it at a point with Ih = q. 
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Example: The graph shown in Figure 10.17 can be formulated using a single 
member as follows: 

Take S1 = {[(2,1)],[(1,2)]} as a generating subgraph. Then: 

 

S = ∑ =
1

0i REF(2,2)i | ∑ =
5

3j REF(1,j)
 
| ∑ =

1
0k REF(1,2)k | S1. 
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Fig. 10.17   A graph generated by pure reflections. 

Reflection functions have the following properties: 

1.  For h1 ≠ h2, REF (h1,q1) | REF (h2,q2) | Si = REF (h2,q2) | REF (h1,q1) | Si. 

2.  REF (h,q)-1 | Si = REF (h,q) | Si, also REF (h,q)2k | Si = Si  

     and REF (h,q)2k+1| Si = REF (h,q) | Si.   
 

10.5.4  PROJECTION FUNCTIONS 

A projection function is defined as, 

 PROJ (h,q) | Si (10-17) 

which is a mapping of Si onto Sj such that:  

 hI′ = q for i=h  

and iI′ = Ii for remaining i s (i=1,2,3). (10-18) 

Naturally, q should be integer if the nodes of Sj are preferred to be on the grid 
points. 
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 Example:  The projections of S1, S2 and S3 are illustrated in Figure 10.18. 

S1 = {[(1,1)],[(2,2)]}, 

S2 = PROJ (1,4) | S1 = {[(4,1)],[(4,2)]}, 

S3 = {[(2,3),(3,3)],[(3,3),(2,4)],[(2,4),(2,3)]}, 

and         S4 = PROJ (2,1) | S3 = {[(2,1),(3,1)],[(3,1),(2,1)],[(2,1),(2,1)]}. 

4

3

2

1

1 2 3 4 5 6

I

I
0

2

1

S
S 2

1

S 3

S 4

 

Fig. 10.18   Projections of subgraphs. 

For a projection function Sj = PROJ (h,q) | Si, Sj is obtained from Si by projecting 
Si onto a plane that is perpendicular to the Ih axis and that intersects the plane at a 
point where Ih = q. 

Projection functions have the following properties: 

1. A projection function has no inverse; 

2. For h1 ≠ h2, PROJ (h1,q1)|PROJ (h2,q2) | Si = PROJ (h2,q2)|PROJ (h1,q1)|Si; 

3. PROJ (h,qk) | ... | PROJ (h,q2) | PROJ (h,q1) | Si = PROJ (h,qk) | Si. 

It should be noted that the useful functions are by no means limited to the four 
types introduced in this section. One can define functions which are more suitable 
for a particular application. Many such functions are defined in Ref. [136]. 

Compact algebraic representation of a structural model is one of the aims of the 
methods presented in this chapter. For this purpose, it may be necessary to use a 
combination of functions, which are presented or can be defined. However, 
optimal representation of an arbitrary configuration in the sense of compactness is 
an open problem. 
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Example: In the following example, a combination of translation and rotation 
functions is used for algebraic representation of a structural model. 

Let S be a double-layer grid as shown in Figure 10.19. A 3-dimensional integer 
coordinate system is used for its presentation. 

The top layer of S is represented as: 

TH = ∑ =
4

0i  TRAN(1,2i) ⎪ ∑ =
5

0j  (3,1,1)],[(1,1,1),TRAN(2,2j)  

TV = ∑ =
5

0i  TRAN(1,2i) ⎪ ∑ =
4

0j  (1,3,1)].[(1,1,1],TRAN(2,2j)  
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Fig. 10.19   A double-layer grid S. 

The bottom layer can be formulated as: 

BH = ∑ =
3

0i  TRAN(1,2i) ⎪ ∑ =
2

0j  (4,2,0)],[(2,2,0),  TRAN(2,4j)  

BV = ∑ =
2

0i  TRAN(1,4i) ⎪ )].0,4,2(),0,2,2[( TRAN(2,2j)3
0j∑ =  

The rest of the model can be represented as: 

,)]0,2,2(),1,1,1[( )2,2,2,1(ROTBT 3
0i

i∑ ==  
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BT1 = ∑ =
4

0i  TRAN(1,2i) ⎪ ∑ = ⎪2
0j  TRAN(2,4j) BT, 

BT2 = ∑ =
2

0i  TRAN(1,4i) ⎪ ⎪TRAN (2,2) ⎪BT, 

The algebraic representation of the entire model can now be shown as: 

S = TH + TV + BH + BV + BT1 + BT2.  

 

10.6   GEOMETRY OF STRUCTURES 

The algebraic representations described in the previous sections not only provide 
the topological properties of a structure, but also provide simple means for 
obtaining other properties. As an example, the geometrical properties of a 
structure can be obtained using simple transformations. All that is needed is to 
establish a relation between the integer coordinate employed and the coordinate 
system chosen for geometrical presentation of the structure. This coordinate 
system can be an orthogonal Cartesian coordinate, a polar, a cylindrical or any 
other curvilinear coordinate system. 

Example:  Consider a grid model as shown in Figure 10.20. 
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Fig. 10.20   A planar grid S. 

Let x and y be the geometric coordinates of a typical joint of the structure with 
respect to a selected two-dimensional Cartesian coordinate system. Consider the 
following transformation: 
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 x = 3I1  and  y = 2I2. (10-19) 

Then the geometry of S will be a graph as shown in Figure 10.21. 
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Fig. 10.21   Geometrical properties of S. 

Now consider the same graph and use a polar coordinate system with the 
following transformation: 

 r = I2 + 1  and  .)1I( 71
π−=θ     (10-20) 

Then S becomes a configuration as illustrated in Figure 10.22. 
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Fig. 10.22   Grid S mapped to a polar coordinate system. 

The same model can be mapped into a three-dimensional cylindrical coordinate 
system with the following simple transformation: 
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 r = 20,  2I
15
π

=θ   and  z = 3I1. (10-21) 

The resulting configuration is depicted in Figure 10.23. 

15
15

2

r

z

θ

3
6

9

12
15

18

21

0

24

 

Fig. 10.23   Grid S mapped to a cylindrical coordinate system. 

It should be noted that the connectivity coordinate system defined in Chapter 7 can 
easily be combined with the concepts presented in this chapter, to obtain a 
favourable nodal numbering of a structure, Kaveh [91]. 

 

10.7   EXTENSION TO HYPERGRAPHS 

For skeletal structures, the model can be represented as a graph; however, there 
are other types of structure having more than two nodes per member. Finite 
element models are examples of this kind. For these structures, the model can be 
considered as a hypergraph, Berge [13]. A hypergraph consists of a set of nodes, 
and a set of members with a relation of incidence which associates some nodes 
with each member. A special case is when two nodes are associated with each 
member; then a hypergraph becomes a graph. Many of the methods presented thus 
far stay valid for hypergraphs as well. 

Example:  A finite element mesh consisting of triangular elements is considered 
as shown in Figure 10.24. This model can be formulated as follows: 

A typical element m1 can be represented as:  

m1 = {[(1,1),(2,1),(2,2)]}. 
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Similarly: 

m2 = {[(1,1),(2,2),(1,2)]}. 

These elements may be shown as: 

S1 = m1 + m2 = {[(1,1),(2,1),(2,2)],[(1,1),(2,2),(1,2)]}. 
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Fig. 10.24   A hypergraph as the model of a finite element mesh. 

Using translation functions, the algebraic representation of the entire FEM 
becomes: 

.S  )j,2(TRAN  )i,1(TRANS 1
2

0j
5

0i ∑∑ ===  

Therefore, mesh generation can be considered as a special case of the 
configuration processing discussed in this chapter. 

Example: A frame structure is considered with its shear wall modelled as 
triangular finite elements, Figure 10.25. 

The algebraic representation of the model can be written as: 

)]},3,3(),3,1[()],3,1(),1,1{[( TRAN(2,2j))i2,1(TRANF 4
0j

2
0i ∑∑ ===  

)],1,9(),2,8(),1,7[()2,8,2,1(ROT TRAN(2,2j))i2,1(TRANW k3
0k

4
0j

1
0i ∑∑∑ ====

 

Sh = F + W,  
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and .S)11,1(REFS h
1

0i
i∑ ==   
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Fig. 10.25   A frame with a shear wall. 

It can be concluded that, simple definitions and concepts of the theory of graphs 
provide a powerful tool for a complete formulation of configuration processing. 
The ideas are by no means limited to topological graphs, but can be applied 
equally to abstract graphs and hypergraphs, preserving the generality of the 
formulation. 

Finally, it should be mentioned that the functions presented in this chapter can 
easily be programmed and employed in data generation of large-scale structures. 
Other functions suitable for particular applications can also be formulated and 
used. 

 
EXERCISES 

10.1 Write the algebraic representation of the following graphs in an arbitrary 
rectilinear ICS: 

 

10.2 Plot the graph corresponding to the following algebraic representation in an 
ICS: 
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S = ∑ =
5

0i TRAN (1,3i) | ∑ =
5

0j TRAN (2,j) | {[(1,1),(2,2)],[(3,1),(2,2)]}. 

10.3 Write the algebraic representation of the following structural model using 
translation functions: 
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10.4 Plot the graph model of the following algebraic representation in an 
arbitrary ICS: 

S = ∑ =
3

0i
i (2,2)]}.[(4,6),(2,2)],{[(6,4),)6,6,2,1(ROT  

10.5 Write the algebraic representation of the following structural model in an 
arbitrary ICS, using reflection functions: 

 

 

10.6 Using translation and rotation functions, write the algebraic representation 
of the following tower structure in the given three-dimensional coordinate system. 
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10.7 Write a computer program to generate a configuration with the translation 
functions of Section 10.5.1. 

10.8 Repeat 10.7 with the rotation functions of Section 10.5.2. 

10.9 Repeat 10.7 with the reflection functions of Section 10.5.3. 

10.10  Repeat 10.7 with the projection functions of Section 10.5.4. 

 


