
CHAPTER 6 

Matrix 

Force Method 

 

6.1   INTRODUCTION 

The force method of structural analysis, in which the member forces are used as 
unknowns, is appealing to engineers, since the properties of members of a 
structure most often depend on the member forces rather than joint displacements. 
This method was used extensively until 1960. After this, the advent of the digital 
computer and the amenability of the displacement method for computation 
attracted most researchers. As a result, the force method and some of the 
advantages it offers in non-linear analysis and optimisation has been neglected. 

Four different approaches are adopted for the force method of structural analysis, 
which will be classified as: 

1. Topological force methods,                         2. Algebraic force methods, 

3. Mixed algebraic-combinatorial force methods, 4. Integrated force method. 

Topological methods have been developed by Henderson [76] and Maunder [169] 
for rigid-jointed skeletal structures using manual selection of the cycle bases of 
their graph models. Methods suitable for computer programming are due to Kaveh 
[89,93,107]. These topological methods are generalized to cover all types of 
skeletal structures, such as rigid-jointed frames, pin-jointed planar trusses and 
ball-jointed space trusses [94]. 
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Algebraic methods have been developed by Denke [36], Robinson [204], Topçu 
[238], Kaneko et al. [87], Soyer and Topçu [ 221] and mixed algebraic-topological 
methods have been used by Gilbert et al. [58], Coleman and Pothen [29-30], and 
Pothen [196]. 

The integrated force method has been developed by Patnaik [177-179], in which 
the equilibrium equations and the compatibility conditions are satisfied 
simultaneously in terms of the force variables. 

In this chapter, topological methods using graph-theoretical concepts are mainly 
presented. However, algebraic methods and mixed algebraic-topological 
approaches are also briefly discussed. 

 

6.2   FORMULATION 

In this section a matrix formulation using the basic tools of structural analysis - 
equilibrium, compatibility and load-displacement relationships - is described. The 
notations are chosen from those most commonly utilized in structural mechanics. 

Consider a structure S with M members and N nodes, which is γ(S) times statically 
indeterminate. Select γ(S) independent unknown forces as redundants. These 
unknown forces can be selected from external reactions and /or internal forces of 
the structure. Denote these redundants by:  

t
γ(S)21 }q ..., ,q ,q{=q .                                    (6-1) 

Remove the constraints corresponding to redundants, in order to obtain a statically 
determinate structure, known as the basic (released or primary) structure of S. 
Obviously a basic structure should be rigid. Consider the joint loads as,  

t
n21 }p ..., ,p ,p{=p ,                                      (6-2) 

where n is the number of components for applied nodal loads. 

Now the stress resultant distribution r due to the given load p for a linear analysis 
by the force method can be written as,  

,10 qBpBr +=                                         (6-3) 
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where B0 and B1 are rectangular matrices each having m rows, and n and γ(S) 
columns, respectively, m being the number of independent components for 
member forces. B0p is known as a particular solution, which satisfies equilibrium 
with the imposed load and B1q is a complementary solution formed from a 
maximal set of independent self-equilibrating stress systems (S.E.Ss), known as a 
statical basis. 

As an example, consider a planar truss, as shown in Figure 6.1(a), which is 5 times 
statically indeterminate. EA is taken to be the same for all the members. 
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                     (a) A planar truss.                   (b)  Selected unknown forces. 

Fig. 6.1   A statically indeterminate planar truss. 

One member force and one component of a reaction may be taken as redundants. 
Alternatively, two member forces can also be selected as unknowns, as shown in 
Figure 6.1(b). The corresponding B0 and B1 matrices can now be obtained by 
applying unit values of pi (i=1,2) and qj (j=1,2,3), respectively: 
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The columns of B1 form a statical basis of S. The underlying subgraph of a typical 
self-equilibrating stress system (for q2 =1) is shown in bold lines, Figure 6.1(b). 

As a second example, consider a portal frame shown in Figure 6.2(a), which is 3 
times statically indeterminate. 
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(a) A simple frame and its primary structure. 
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(b) Three self-equilibrating systems. 

Fig. 6.2   A statically indeterminate frame. 

This structure is made statically determinate by an imaginary cut at the middle of 
its beam. The unit value of external load p1 and each of the bi-actions qi (i=1,2,3) 
lead to the formation of B0 and B1 matrices, in which the two end bending 
moments (Mi,Mj) of a member are taken as its member forces:  
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The columns of B1 form a statical basis of S, and the underlying subgraph of each 
self-equilibrating stress system is a cycle, as illustrated in bold lines, Figure 6.2(b). 
Notice that three self-equilibrating stress systems are formed on a cycle of a planar 
frame. 

In both of the above examples, particular and complementary solutions are 
obtained from the same basic structure. However, this is not a necessary 
requirement, as imagined by some authors. In fact a particular solution is any 
solution satisfying equilibrium with the applied loads, and a complementary 
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solution is any maximal set of independent self-equilibrating systems. The latter is 
a basis of a vector space over the field of real numbers, known as a 
complementary solution space, Ref. [78]. 

Using the same basic structure is equivalent to searching for a cycle basis of a 
graph, but restricting the search to fundamental cycles only, which is convenient 
but not efficient when the structure is complex or cycle bases with specific 
properties are needed. 

As an example, consider a 3-storey frame as shown in Figure 6.3(a). A cut system 
as shown in Figure 6.3(b) corresponds to a statical basis containing three self-
equilibrating stress systems formed on each element of the cycle basis shown in 
Figure 6.3(b). However, the same particular solution can be employed with a 
statical basis formed on the cycles of the basis shown in Figure 6.3(c). 

 
             (a)                           (b)                                            (c) 

Fig. 6.3   A 3-storey frame with different cut systems. 

A basic structure need not be selected as a determinate one. For a redundant basic 
structure, one may obtain the necessary data either by analysing it first for the 
loads p and bi-actions qi = 1 (i=1,2, ... , γ(S)), or by using existing information. 

The compatibility equations in the actual structure will now be derived. Using the 
load-displacement relationship for each member, and collecting them in the 
diagonal of the unassembled flexibility matrix Fm, one can write member 
distortions as: 

 qBFpBFrFu 1m0mm +== . (6-4) 

In matrix form:  
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From the principle of virtual work: 
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Combining Eq. (6-5) and Eq. (6-6) results in, 
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in which v0 contains the displacements corresponding to the force components of 
p, and vc denotes the relative displacements of the cuts for the basic structure. 
Performing the multiplication, 
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or 

,)()( 1m
t
00m

t
00 qBFBpBFBv +=                  (6-9) 

and 

 .)()( 1m
t
10m

t
1c qBFBpBFBv +=  (6-10) 

Consider now the compatibility conditions as: 

vc = 0.                                                   (6-11) 

The above equation together with Eq. (6-10) leads to: 
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t
1 pBFBBFBq −−=  (6-12) 

Substituting in Eq. (6-9) yields: 
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t
00 pBFBBFBBFBBFBv −−=  (6-13) 

and the stress resultant in a structure can be obtained as,  

,])( [ 0m
t
1

1
1m

t
110 pBFBBFBBBr −−=   (6-14) 

where )( 1m
t
1 BFBG =  is known as the flexibility matrix of the structure. 
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For an efficient force method, the matrix G should be: 

(a) sparse; 

(b) well-conditioned; 

(c) well-structured, i.e. narrowly banded. 

In order to provide the properties (a) and (b) for G, the structure of B1 should be 
carefully designed, since the pattern of Fm for a given discretization is unchanged; 
i.e. a suitable statical basis should be selected. This problem is treated in different 
forms by various methods. In the following, graph-theoretical methods are 
described for the formation of appropriate statical bases of different types of 
skeletal structures. The property (c) above has a totally combinatorial nature and is 
studied in Chapter 8. 

 

6.3   GENERALIZED CYCLE BASES OF A GRAPH 

In this section, S is considered to be a connected graph. For γ(S) = aM(S) + bN(S) 
+ cγ0(S), the coefficients b and c are assumed to be integer multiples of the 
coefficient  a > 0. Only those coefficients given in Table 2.1 are of interest. 

Definition 1:  A subgraph Si is called an elementary subgraph, if it does not 
contain a subgraph iS′  ⊆ Si with γ( iS′ ) > 0. A connected rigid subgraph T of S 
containing all the nodes of S is called a γ-tree, if γ(T) = 0. For γ(Si) = b1(Si), a γ-
tree becomes a tree as defined in Chapter 1. 

Obviously, a structure whose model is a γ-tree is statically determinate when γ(S) 
describes the degree of static indeterminacy of the structure. The ensuing stress 
resultants can uniquely be determined everywhere in the structure by equilibrium 
only. Examples of γ-trees for different γ functions are shown in Figure 6.4. 

  
(a) γ(S)=3M−3N+3.      (b) γ(S)=M−2N+3.     (c) γ(S)=M−3N+6. 

Fig. 6.4   Examples of γ-trees. 
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Notice that γ(T) = 0 does not guarantee the rigidity of a γ-tree. For example, the 
graphs depicted in Figure 6.5 both satisfy γ(T) = 0; however, neither is rigid. 

  
                    (a)  γ(S)=M−2N+3.                        (b)  γ(S)=M−3N+6. 

Fig. 6.5   Structures satisfying γ(T)=0 which are not rigid. 

Definition 2:   A member of S − T is called a γ-chord of T. 

Definition 3:  A removable subgraph Sj of a graph Si, is the elementary subgraph 
for which γ(Si − Sj) = γ(Si), i.e. the removal of Sj from Si does not alter its DSI. A 
γ-tree of S containing two chosen nodes, which has no removable subgraph, is 
called a γ-path between these two nodes.  

n t

ns

tn
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n tns

 
    (a)  γ(S)=α(M−N+1).         (b)  γ(S)=M−2N+3.           (c)  γ(S)=M−3N+6. 

Fig. 6.6   Examples of γ-paths. 

As an example, the graphs shown in Figure 6.6 are γ-paths between the specified 
nodes ns and nt. 

Definition 4:   A connected rigid subgraph of S with γ(Ck) = a, which has no 
removable subgraph, is termed a γ-cycle of S. The total number of members of Ck, 
denoted by L(Ck),  is called the length of Ck.  Examples of γ-cycles are shown in 
Figure 6.7. 
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        (a)  γ(S)=α(M−N+1).         (b)  γ(S)=M−2N+3.        (c)  γ(S)=M−3N+6. 

Fig. 6.7   Examples of γ-cycles. 

Definition 5:   Let mi be a γ-chord of T. Then T ∪ mi contains a γ-cycle Ci which 
is defined as a fundamental γ-cycle of S with respect to T. Using the Intersection 
Theorem of Chapter 2 (Eq. (2-9)), it can easily be shown that, 

γ(T ∪ mi) = 0 + (a+2b+c) − (2b+c) = a, 

indicating the existence of a γ-cycle in T ∪ mi. For a rigid T, the corresponding 
fundamental γ-cycle is also rigid, since the addition of an extra member between 
the existing nodes of a graph cannot destroy the rigidity. A fundamental γ-cycle 
can be obtained by omitting all the removable subgraphs of T ∪ mi. 

Definition 6:  A maximal set of independent γ-cycles of S is defined as a 
generalized cycle basis (GCB) of S. A maximal set of independent fundamental γ-
cycles, is termed a fundamental generalized cycle basis of S. The dimension of 
such a basis is given by η(S) = γ(S)/a. 

As an example, a generalized cycle basis of a planar truss is shown in Figure 6.8. 

 
(a) A planar truss S. 

 
(b) A generalized cycle basis of S. 

Fig. 6.8   A planar truss S, and the elements of a GCB of S. 



166                                             Structural Mechanics; Graph and Matrix Methods 

 

 

166

Definition 7.   A generalized cycle basis-member incidence matrix C is an 
η(S)×M matrix with entries –1, 0 and +1, where cij = 1 (or − 1) if γ-cycle Ci 
contains positively (or negatively) oriented member mj, and cij = 0 otherwise. The 
generalized cycle adjacency matrix is defined as D, which is an η(S)×η(S) matrix 
when undirected γ-cycles are considered; then the negative entries of C become 
positive. 

 

6.4 MINIMAL AND OPTIMAL GENERALIZED CYCLE BASES 

A matrix is called sparse if many of its entries are zero. 

A generalized cycle basis C = {C1,C2,...,Cη(S)} is called minimal if it corresponds 
to a minimum value of : 

 L(C) = ∑
=

η(S)

1i
i )L(C .       (6-15) 

Obviously χ(C) = L(C) and a minimal GCB can be defined as a basis which 
corresponds to minimum χ(C). A GCB for which L(C) is near minimum is called 
a subminimal GCB of S. 

A GCB corresponding to maximal sparsity of the GCB adjacency matrix is called 
an optimal generalized cycle basis of S. If χ(CCt) does not differ considerably 
from its minimum value, then the corresponding basis is termed suboptimal. 

The matrix intersection coefficient σi(C) of row i of GCB incidence matrix C is 
the number of row j such that:  

  (a) j∈{i+1,i+2,...,η(S)}, 

  (b) Ci ∩ Cj  ≠ ∅ , i.e. there is at least one k such that the column 
  k of both γ-cycles Ci and Cj (rows i and j) contain non-zero entries. 

Now it can be shown that: 

 χ(D) = η(S) + 2 ∑
−

=

1η(S)

1i
i )(σ C .   (6-16) 

This relationship shows the correspondence of a GCB incidence matrix C and that 

of its GCB adjacency matrix. In order to minimize χ(D), the value of ∑
−

=

1η(S)

1i
i )(σ C  
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should be minimized, since η(S) is a constant for a given structure S; i.e. γ-cycles 
with a minimum number of overlaps should be selected. 

 

6.5 PATTERN EQUIVALENCE OF FLEXIBILITY AND CYCLE 
ADJACENCY MATRICES 

Matrix B1 containing a statical basis, in partitioned form, is pattern equivalent to 
Ct. Similarly t

1B Fm B1 is pattern equivalent to CICt or CCt. This correspondence 
transforms some structural problems associated with the characterization of G = 

t
1B Fm B1 into combinatorial problems of dealing with CCt. 

As an example, if a sparse matrix G is required, this can be achieved by increasing 
the sparsity of CCt. Similarly for a banded G, instead of ordering the elements of a 
statical basis (self-equilibrating stress systems), one can order the corresponding 
cycles. This transformation has many advantages, such as: 

1) The dimension of CCt is often smaller than that of G. For example, for a 
space frame the dimension of CCt is six-fold and for a planar frame three-fold 
smaller than that of G. Therefore the optimisation process becomes much simpler 
when combinatorial properties are used. 

2) The entries of C and CCt are elements of Z2 and therefore easier to operate 
on, compared to B1 and G which have real numbers as their entries. 

3) The advances made in combinatorial mathematics and graph theory become 
directly applicable to structural problems. 

4) A correspondence between algebraic and graph-theoretical methods 
becomes established. 

 

6.6   MINIMAL GCB OF A GRAPH 

Theoretically, a minimal GCB of a graph can be found using the Greedy 
Algorithm developed for matroids. This will be discussed in Chapter 9 after 
matroids have been introduced, and here only the algorithm is briefly outlined. 
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Consider the graph model of a structure, and select all of its γ-cycles. Order the 
selected γ-cycles in ascending order of length. Denote these cycles by a set C. 
Then perform the following steps: 

Step 1: Choose a γ-cycle C1 of the smallest length, i.e. L(C1) ≤ L(Ci) for all Ci 
∈C.  

Step 2: Select the second γ-cycle C2 from C − {C1} which is independent of C1 
and L(C2) ≤ L(Ci) for all γ-cycles of C − { C1}. 

Step k: Subsequently choose a γ-cycle Ck from C − {C1,C2,...,Ck-1} which is 
independent of C1, C2,..., Ck-1 and L(Ck) ≤ L(Ci) for all Ci ∈ C − {C1,C2,..., Ck-1 }. 

After η(S) steps, a minimal GCB will be selected by this process, a proof can be 
found in Kaveh [94]. 

 

6.7  SELECTION OF A SUBMINIMAL GCB:  

       PRACTICAL METHODS 

In practice, three main difficulties are encountered in an efficient implementation 
of the Greedy Algorithm. These difficulties are briefly mentioned in the following: 

1. Selection of some of the γ-cycles for some γ(S) functions; 

2. Formation of all of the γ-cycles of S; 

3. Checking the independence of γ-cycles. 

In order to overcome the above difficulties, various methods are developed. The 
bases selected by these approaches correspond to very sparse GCB adjacency 
matrices, although these bases are not always minimal. 

6.7.1 METHOD 1 

This is a natural generalization of the method for finding a fundamental cycle 
basis of a graph, and consists of the following steps: 

Step 1: Select an arbitrary γ-tree of S, and find its γ-chords. 

Step 2: Add one γ-chord at a time to the selected γ-tree to form fundamental γ-
cycles of S with respect to the selected γ-tree. 
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The main advantage of this method is the fact that the independence of γ-cycles is 
guaranteed by using a γ-tree. However, the selected γ-cycles are often quite long, 
corresponding to highly populated GCB adjacency matrices. 

6.7.2 METHOD 2 

This is an improved version of Method 1, in which a special γ-tree has been 
employed and each γ-chord is added to γ-tree members after being used for 
formation of a fundamental γ-cycle. 

Step 1: Select the centre "O" of the given graph. Methods for selecting such a 
node are discussed in Chapter 7. 

Step 2: Generate a shortest route γ-tree rooted at the selected node O, and order 
its γ-chords according to their distance from O. The distance of a member is taken 
as the sum of the shortest paths between its end nodes and O. 

Step 3: Form a γ-cycle on the γ-chord of the smallest-distance number, and add 
the used γ-chord to the tree members, i.e. form T ∪ m1.  

Step 4: Form the second γ-cycle on the next nearest γ-chord to O, by finding a 
γ-path in T ∪ m1 (not through m2). Then add the second used γ-chord m2 to T ∪ 
m1 obtaining T ∪ m1 ∪ m2. 

Step 5: Subsequently form the kth γ-cycle on the next unused γ-chord nearest to 
O, by finding a γ-path in the T ∪ m1 ∪ m2 ∪ ... ∪ mk−1 (not through mk). Such a γ-
path together with mk forms a γ-cycle. 

Step 6: Repeat Step 5 until η(S) of γ-cycles are selected. 

Addition of the used γ-chords to the γ-tree members leads to a considerable 
reduction in the length of the selected γ-cycles, while maintaining the simplicity of 
the independence check. 

In this algorithm, the use of an SRT, orders the nodes and members of the graph. 
Such an ordering leads to fairly banded member-node incidence matrices. 
Considering the columns corresponding to tree members as independent columns, 
a base is effectively selected for the cycle matroid of the graph, Kaveh [89,108]. 
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6.7.3 METHOD 3 

This method uses an expansion process, at each step of which one independent γ-
cycle is selected and added to the previously selected ones. The independence is 
secured using an admissibility condition defined as follows: 

A γ-cycle Ck+1 added to the previous selected γ-cycles Ck = C1 ∪ C2 ∪ ... ∪ Ck is 
called admissible if  

γ(Ck ∪ Ck+1) = γ(Ck) + a,                             (6-17) 

where "a" is the coefficient  defined in Table 2.1. The algorithm can now be 
described as follows: 

Step 1: Select the first γ-cycle of minimal length C1. 

Step 2: Select the second γ-cycle of minimal length C2 which is independent of 
C1, i.e. select the second admissible γ-cycle of minimal length. 

Step k: Subsequently find the kth admissible γ-cycle of minimal length. 
Continue this process until η(S) independent γ-cycles forming a subminimal GCB 
are obtained. 

A γ-cycle of minimal length can be generated on an arbitrary member by adding a 
γ-path of minimal length between the two end nodes of the member (not through 
the member itself). The main advantage of this algorithm is avoiding the formation 
of all γ-cycles of S and also the independence control that becomes feasible by 
graph-theoretical methods. 

The above methods are elaborated for specific γ(S) functions in subsequent 
sections, and examples are included to illustrate their simplicity and efficiency. 

 

 

6.8 FORCE METHOD FOR THE ANALYSIS  

 OF RIGID-JOINTED STRUCTURES 

For this type of skeletal structure, a statical basis can be generated on a cycle basis 
of its graph model. The function representing the degree of static indeterminacy, 
γ(S), of a rigid-jointed structure is directly related to the first Betti number b1(S) of 
its graph model,  
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  ( ) ( ) ( ) ( ) ( )[ ],SbSNSMαSαbSγ 01 +−==     (6-18) 

where α = 3 or 6 depending on the structure being a planar or a space frame, 
respectively. 

For a frame structure, matrix B0 can easily be generated using a shortest route tree 
of its model, and B1 can be formed by constructing 4 or 6 S.E.Ss on each element 
of a cycle basis of S. 

In order to obtain a flexibility matrix of maximal sparsity, a cycle basis 
corresponding to minimum χ(D) is needed, i.e. an optimal cycle basis should be 
formed. However, because of the complexity or this problem, most of the research 
has been concentrated on minimal cycle basis selection, except those of Refs. 
[97,98], which minimize the overlaps of the cycles rather than their length only. 

Methods for formation of a cycle basis can be divided into two groups, namely: 

(a) topological methods,  (b) graph-theoretical approaches. 

Topological methods useful for the formation of cycle bases by hand, were 
developed by Henderson and Maunder [78] and Kaveh [89,108]. Graph-
theoretical methods suitable for computer applications, were developed by Kaveh 
[93,96, 108]. For completeness of the discussion, both groups of methods are 
described in this section. The first group, however, requires some terminology 
from algebraic and combinatorial topology for which the reader may refer to 
Cooke and Finney [31]; otherwise Section 6.8.1 can be ignored. 

6.8.1 CYCLE BASES SELECTION: TOPOLOGICAL METHODS 

Cycle selection procedures described in this section use the concept of embedding 
the geometric realization of S into another polyhedron whose dissection has 
dimension equal to 2. The idea originates from a planar graph embedded in R2, in 
which the cycles bounding finite regions form an efficient basis (mesh basis) for 
the first cycle group Z1(S,R). 

The object is to extend this approach to embedding S on polyhedrons and 
manifolds with certain properties. These properties are measured by using the 
homology groups Hp(K,R) of the underlying complex, which measure, roughly 
speaking, the number of independent p-dimensional holes of K. In other words, 
they measure the extent to which K has non-bounding p-cycles. 

A 2-Dimensional Polyhedron Embedding. Let S be the mathematical model of a 
structure, which is a simple graph (1-complex). The underlying polyhedron or 
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geometric realization of S is often denoted by |S|. However, for simplicity it is also 
denoted by S. 

An embedding f: S→ P is a homemorphism of S into polyhedron P. An embedding 
is called a 2-cell embedding if the components of [P−f(S)] are all 2-cells. If the 2-
cells are regular, then embedding is called a regular 2-cell embedding. Let f (S) be 
dissected into a 1-complex isomorphic to the dissection of S. Then f(S) and the 
components of [P−f(S)] form a dissection of P into a 2-dimensional cell complex 
K.  

Admissible Embeddings. The cycles bounding the 2-cells of K are known as 
regional cycles. An admissible embedding f of S is one for which the regional 
cycles form a set of b1(S) independent cycles from Z1(K,R). The necessary and 
sufficient condition for a 2-cell embedding f: S → P to be admissible is that the 
homology groups with real coefficients are trivial. In the case of 2-cell embedding, 
this condition holds when first and second Betti number of K are zero. Using 
concepts from algebraic topology, the admissibility condition can be stated as 
follows: 

The necessary and sufficient condition for f: S → P to be admissible is 
that the corresponding K be acyclic. 

A regular complex K is called acyclic if all homology groups of K are trivial. 
Equivalently, any cycle of Z1(K,R) bounds in K; i.e. Z1(K,R) = B1(K,R). 

It is easy to show that a contractible complex is acyclic; hence a contractible 
embedding is admissible. If K is collapsible, then it is obviously contractible. Thus 
a collapsible embedding is also admissible. 

A graph can be viewed as the 1-skeleton of a 3-complex. An n-cell is called 
collapsible if it can be shrunk into the remainder of its n−1 cells through a free 
n−1 cell. If a 3-complex can be collapsed into a point, then it is called collapsible. 
A collapsible 3-complex can be used for the formation of a cycle basis of its 1-
skeleton. This can be achieved by collapsing all the 3-cells through free 2-cells or 
2-cells being freed in subsequent steps. 

Example:  Consider a space graph S as shown in Figure 6.9(a). S can be viewed 
as the 1-skeleton of a 3-complex as depicted in Figure 6.9(b). After collapsing all 
the 3-cells through the shaded 2-cells, the bounding cycles of the remaining 2-
complex (81 cycles) form a cycle basis of S. 
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                  (a) A space graph S.  (b) S embedded on a 3-complex 

Fig. 6.9   A space graph and its collapsible embedding. 

Modified Manifold Embedding: Edmond’s permutation technique provides a 
method for a 2-cell embedding of S in an orientable 2-manifold M. The choice of 
node permutations in this method is made arbitrarily, which may lead to a 
manifold with an unnecessarily large genus. The genus of graph is the minimum 
number of handles of a sphere on which the graph can be embedded. In order to 
reduce the genus of M, Duke [41] developed a reduction technique for 
transforming a 2-cell embedding M into M*, where the genus of M* is one less 
than that of M. Youngs [253] developed an algorithm for minimal embedding by 
considering all the possible sets of node permutations of S, leading to genus of S. 
This algorithm is very lengthy and impractical. Kaveh [95] developed a practical 
method in which the node permutations are determined in the process of 
embedding S. However, this algorithm does not always lead to minimal 
embeddings. 

A different approach may also be employed which is based on an intuitive regular 
embedding of S on a manifold. For an embedding f: S → P which dissects 
polyhedron M into 2-complex K, M is a manifold if: 

1.  Each 1-cell of K is incident with exactly two 2-cells. 

2.  All the 2-cells and 1-cells of K having a particular 0-cell and a face can be 
ordered in a sequence so that the consecutive cells are incident. 

3. K can be oriented so that ∑ =
i

i 0z , where iz  is a regional cycle. 

If M is manifold, then b2(K) = 1 and b1(K) = 2Ψ, where Ψ is the genus of M, i.e. 
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M is homeomorphic to a sphere with Ψ handles. Thus f is not admissible, but can 
be modified by adding 2Ψ appropriate fillings and one perforation of order 2 to 
make it admissible. 

Example:  Consider a hollow box S embedded on a sphere with two handles, i.e. a 
double torus, as shown in Figure 6.10(a). Modifications are made by four proper 
fillings and one perforation (P) of order 2, as illustrated schematically in Figure 
6.10 (b). 

P
P

 

         (a) S and its embedding.  (b) Schematic illustration of the modified torus. 

Fig. 6.10   An admissible embedding of S. 

Seventy-nine cycles of length 4 and two cycles of length 8 are selected as a 
minimal cycle basis of S. However, for multi-member complex structures, this 
method is by no means practical. 

Example:  Let S be the graph model of a 3-storey frame as shown in Figure 
6.11(a). The first storey can be embedded on a torus and the third storey on a 
second torus. Four tubes can be added to accommodate the columns of the second 
storey. Identifying these through one of the tubes results in a sphere with five 
handles as depicted in Figure 6.11(b). Once the embedding is achieved, 
modifications can easily be made. In the schematic representation, fillings are 
shaded and the necessary perforation is denoted by P, Figure 6.11(b). 

In a manifold embedding, the quality of the selected cycle basis depends upon the 
genus of the manifold on which S is embedded. Thus it is ideal to have a minimal 
embedding. However, little is known about an efficient approach to carry out such 
an embedding. 

 



CHAPTER 6 Matrix Force Method...                                                                 175 

 

 

175

P

 

(a) Graph model of a space frame.  (b) Schematic illustration of the embedding. 

Fig. 6.11   A modified manifold embedding of a space graph. 

Embedding S on a Union of Discs: S can be considered as the union of some 
planar connected non-separable subgraphs of S. The process of such an 
embedding is as follows: 

Step 1:  Identify a planar subgraph S1 and embed it on a disc d1 whose 
dissection K1 is isomorphic to S1. 

Step 2: The second subgraph S2 is identified such that the corresponding K2 has 
a 2-cell with a free 1-face and 21 KK ∩  is a connected subspace of the frontier 
of d1. 

Step 3: The process step 2 is continued, and at the ith step Ki is joined to 

j
1-i

1j
1i K K

=

− ∪= , with Ki having a free 1-face and 1i
i KK −∩  being a connected 

subspace of the frontier of di-1 Obviously Ki is collapsible to Ki-1. 

The process will be terminated when all 1-cells of S are embedded in j
q

1j
q KK

=
∪=  

which is collapsible, since: 

.KK...K...KKK 1
1i1qq =→→→→→= −  
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Example:  Consider a space frame S as illustrated in Figure 6.12.  This model is 
embedded on three discs K1-K3 as shown in the Figure, resulting in a cycle basis 
consisting of 56 regional cycles of length 4.  

It is ideal to embed S in a complex K with a minimum number of discs for all 
possible collapsible embeddings. This number is known as the thickness of the 
graph S, denoted by t(S), Ref. [178]. Hence an embedding should be performed 
with q as the thickness of S. Again only partial results are available about the 
thickness of the graphs. Any approach to embedding on a smaller number of discs 
would be advantageous for reducing the overlaps of the cycles. 
 

 
                                S                                                  K1 

 

                                  K2                                              K3 

Fig. 6.12   A space graph and the identified discs K1-K3. 

Remark:  The computer implementation of the methods of this section for 
selecting a cycle basis may become uneconomical from engineering point of view; 
however, the study of these methods provides a firm background for designing 
many graph-theoretical approaches. The visualization of these methods helps to 
develop algorithms having different useful characteristics. As an example, the 
expansion process of the next section may be viewed as an embedding of a graph 
on the elements of a disc space, with discs having certain properties. Similarly, 
one can design an algorithm for embedding a graph on the elements of a ball 
space, with balls having specified properties (the reverse process of a collapsible 
embedding). 

6.8.2  CYCLE BASES SELECTION: GRAPH-THEORETICAL METHODS 

Cycle bases of graphs have many applications in various fields of engineering. 
The amount of work in these applications depends on the cycle basis chosen. A 
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basis with shorter cycles reduces the time and storage required for some 
applications; i.e. it is ideal to select a minimal cycle basis, and for some other 
applications minimal overlaps of cycles are needed; i.e. optimal cycle bases are 
preferred. In this section, the formation of minimal and subminimal cycle bases is 
first discussed. Then the possibility of selecting optimal and suboptimal cycle 
bases is investigated. 

Minimal cycle bases were considered first by Stepanec [225] and improved by 
Zykov [257]. Many practical algorithms for selecting subminimal cycle bases have 
been developed by Kaveh [93] and Cassell et al. [21]. Similar methods have been 
presented by Hubicka and Syslø [83] claiming the formation of a minimal cycle 
basis of a graph. Kolasinska [140] found a counter example to Hubicka and 
Syslø´s algorithm. A similar conjecture was made by Kaveh [93] for planar 
graphs; however, a counter example has been given by Kaveh and Roosta [114]. 
Horton [82] presented a polynomial time algorithm to find minimal cycle bases of 
graphs. Kaveh and Rahami used an algebraic graph-theoretical approach [133]. 

In this section, the merits of the algorithms developed by different authors are 
discussed; a method is given for selection of minimal cycle bases, and efficient 
approaches are presented for the generation of subminimal cycle bases. 

Formation of A Minimal Cycle on a Member:  A minimal length cycle Ci on a 
member mj, called its generator, can be formed by using the shortest route tree 
algorithm as follows: 

Start the formation of two SRTs rooted at the two end nodes ns and nt of mj, and 
terminate the process as soon as the SRTs intersect each other (not through mj 
itself) at say nc. The shortest paths between ns and nc, and nt and nc, together with 
mj, form a minimal cycle Ci on mj. Using this algorithm, cycles of prescribed 
lengths can also be generated. 

As an example, Ci is a minimal cycle on mj in Figure 6.13. The SRTs are shown in 
bold lines. Notice that the generation of SRTs is terminated as soon as nc has been 
found. 

C

n
n

n nm

k
c

s

i

j t  

Fig. 6.13   A minimal cycle on a member. 
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A minimal cycle on a member mj passing through a specified node nk can similarly 
be generated. An SRT rooted at nk is formed and as soon as it hits the end nodes of 
mj, the shortest paths are found by backtracking between nk and ns, and nk and nt. 
These paths together with mj form the required cycle. As an example, a minimal 
cycle on mj containing nk is illustrated by dashed lines, Figure 6.13. 

Different Cycle Sets for Selecting a Cycle Basis: It is obvious that a general 
cycle can be decomposed into its simple cycles. Therefore it is natural to confine 
the considered set to only simple cycles of S. Even such a cycle set, which forms a 
subspace of the cycle space of the graph, has many elements and is therefore 
uneconomical for practical purposes. 

1 1
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Fig. 6.14   A graph S and selected cycles. 

In order to overcome the above difficulty, Kaveh [93] used an expansion process, 
selecting the smallest admissible (independent with additional restriction) cycles, 
one at a time, until b1(S) cycles forming a basis had been obtained. In this 
approach, a very limited number of cycles were checked for being an element of a 
basis. As an example, the expansion process for selecting a cycle basis of S is 
illustrated in Figure 6.14. 

Hubicka and Syslø [83] employed a similar approach, without the restriction of 
selecting one cycle at each step of expansion. In their method, when a cycle has 
been added to the previously selected cycles, increasing the first Betti number of 
the expanded part by "p", then p created cycles have been formed. As an example, 
in this method, Steps 4 and 5 will be combined into a single step, and addition of 
cycle 5 will require immediate formation of the cycle 4. The above method is 
modified, and an efficient algorithm is developed for the formation of cycle bases 
by Kaveh and Roosta [114], 

Finally, Horton [82] proved that the elements of a minimal cycle basis lie in 
between a cycle set consisting of the minimal cycles on each member of S which 
passes through each node of S, i.e. each member is taken in turn and all cycles of 
minimal length on such a member passing through all the nodes of S are 
generated. Obviously, M(S)×M(S) such cycles will be generated. 
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Independence Control: Each cycle of a graph can be considered as a column 
vector of its cycle-member incidence matrix. An algebraic method such as 
Gaussian elimination may then be used for checking the independence of a cycle 
with respect to the previously selected sub-basis. However, although this method 
is general and reduces the order dependency of the cycle selection algorithms, like 
many other algebraic approaches its application requires a considerable amount of 
storage space. 

The most natural graph-theretical approach is to employ a spanning tree of S, and 
form its fundamental cycles. This method is very simple; however, in general its 
use leads to long cycles. The method can be improved by allowing the inclusion of 
each used chord in the branch set of the selected tree. Further reduction in length 
may be achieved by generating an SRT from a centre node of a graph, and the use 
of its chords in ascending order of distance from the centre node, Kaveh [89]. 

A third method, which is also graph-theretical, consists of using admissible cycles. 
Consider the expansion process, 

,SC...CCCC )S(b321
1 1 =→→→→=  

where i
k

1i
k C C

=
∪= . A cycle C k+1 is called an admissible cycle, if for Ck+1 =Ck ∪ 

Ck+1, 

b1(Ck+1) = b1 (Ck
 ∪ Ck+1) = b1 (Ck) + 1.                        (6-19) 

It can easily be proved that the above admissibility condition is satisfied if any of 
the following conditions hold: 

(1)   Ak+1 = Ck ∩ Ck+1 = ∅, where ∅ is an empty intersection. 

 (2)  1b (Ak+1) = r − s, where r and s are the numbers of components of Ck+1 and 
Ck,  respectively. 

(3)  1b (Ak+1) = 0 when Ck and Ck+1 are connected (r=s). 

In the above relations, 1b (Ai) = ii NM − + 1, where iM and iN  are the numbers 
of members and nodes of Ai, respectively. 

As an example, the sequence of cycle selection in Figure 6.15 are as specified by 
their numbers. 
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Fig. 6.15   A cycle and its bounded cycles. 

A different approach, is suggested by Hubicka and Syslø, in which,  

 b1(Ck+1) = b1(Ck) + p, (6-20) 

is considered to be permissible. However, a completion is performed for p > 1. As 
an example, when C3 is added to Ck, its first Betti number is increased by 3 and 
therefore cycles C1 and C2 must also be selected at that stage, before further 
expansion. 

Having discussed the mathematical concepts involved in a cycle basis selection, 
three different algorithms are now described. 

Algorithm 1 (Kaveh 1974) 

Step 1: Select a pseudo-centre node of maximal degree O. Such a node can be 
selected manually or automatically using the graph or algebraic graph-theretical 
methods discussed in Chapter 7. 

Step 2:  Generate an SRT rooted at O, form the set of its chords and order them 
according to their distance from O. 

Step 3: Form one minimal cycle on each chord in turn, starting with the chord 
nearest to the root node. A corresponding simple path is chosen which contains 
members of the tree and the previously used chords, hence providing the 
admissibility of the selected cycle. 

This method selects subminimal cycle bases using the chords of an SRT. The 
nodes and members of the tree and consequently the cycles are partially ordered 
according to their distance from O. This is the combinatorial version of the Turn-
back method to be discussed in Section 6.10.1. 
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Algorithm 2 (Kaveh 1974) 

Step 1:  Select a centre or pseudo-centre node of maximal degree O.  

Step 2: Use any member incident with O as the generator of the first minimal 
cycle. Take any member not used in C1 and incident with O, and generate on it the 
second minimal cycle. Continue this process until all the members incident with O 
are used as the members of the selected cycles. The cycles selected so far are 
admissible, since the intersection of each cycle with the previously selected cycles 
is a simple path (or a single node) resulting in an increase of the Betti number by 
unity for each cycle. 

Step 3:  Choose a starting node O′ , adjacent to O, which has the highest 
degree. Repeat a step similar to Step 2, testing each selected cycle for 
admissibility.  If the cycle formed on a generator mk fails the test, then examine 
the other minimal cycles on mk if any such cycle exists. If no admissible minimal 
cycle can be found on mk, then: 

(i)   Form admissible minimal cycles on the other members incident with O′ . If mk 
does not belong to one of these subsequent cycles, then 

(ii)  Search for an admissible minimal cycle on mk, since the formation of cycles 
on other previous members may now have altered the admissibility of this cycle. If 
no such cycle can be found, leave mk unused. In this step more than one member 
may be left unused. 

Step 4: Repeat Step 3 using as starting nodes a node adjacent to O and/or O′ , 
having the highest degree. Continue the formation of cycles until all the nodes of S 
have been tested for cycle selection. If all the members have not been used, select 
the shortest admissible cycle available for an unused member as generator. Then 
test the minimal cycles on the other unused members, in case the formation of the 
longer cycle has altered the admissibility. Each time a minimal cycle is found to be 
admissible, add to Ci and test all the minimal cycles on the other unused members 
again. Repeat this process, forming other shortest admissible cycles on unused 
members as generators, until S is re-formed and a subminimal cycle basis has been 
obtained. 

Both of the above two algorithms are order-dependent, and various starting nodes 
may alter the result. The following algorithm is more flexible and less order-
dependent, and in general leads to the formation of shorter cycle bases.  

Algorithm 3 (Kaveh 1976) 

Step 1:  Generate as many admissible cycles of length 3 as possible. Denote the 
union of the selected cycles by Cn. 
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Step 2: Select an admissible cycle of length 4 on an unused member. Once such 
a cycle Cn+1 is found, check the other unused members for possible admissible 
cycles of length 3. Again select an admissible cycle of length 4 followed by the 
formation of possible 3-sided cycles. This process is repeated until no admissible 
cycles of length 3 and 4 can be formed. Denote the generated cycles by Cm. 

Step 3: Select an admissible cycle of length 5 on an unused member. Then 
check the unused members for the formation of 3-sided admissible cycles. Repeat 
Step 2 until no cycle of length 3 or 4 can be generated. Repeat Step 3 until no 
cycle of length 3, 4 or 5 can be found. 

Step 4:  Repeat similar steps to Step 3, considering higher-length cycles, until 
b1(S) admissible cycles forming a subminimal cycle basis are generated. 

Algorithm 4 (Horton 1987) 

Step 1: Find a minimum path P(ni,nj) between each pair of nodes ni and nj. 

Step 2: For each node nk and member ml = (ni,nj), generate the cycle having ml  
and nk as P(nk,ni) + P(nk,nj) + (ni,nj)  and calculate its length. Degenerate cases in 
which P(nk,ni) and P(nk,nj) have nodes other than nk in common  can be omitted. 

Step 3:  Order the cycles by their weight (or length). 

Step 4: Use the Greedy Algorithm to find a minimal cycle basis from this set of 
cycles.  

A simplified version of the above Algorithm can be designed as follows: 

Step 1: Form a spanning tree of S rooted from an arbitrary node, and select its 
chords. 

Step 2: Take the first chord and form N(S) − 2 minimal cycles, each being 
formed on the specified chord containing a node of S (except the two end nodes of 
this chord). 

Step 3: Repeat Step 2 for the other chords, in turn, until [M(S)+ N(S) + 1]×  
[N(S) − 2] cycles are generated. Repeated and degenerate cycles should be 
discarded. 

Step 4: Order the cycles in ascending magnitude of their lengths. 
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Step 5: Using the above set of cycles, employ the Greedy Algorithm to form a 
minimal cycle basis of S. 

The main contribution of Horton's Algorithm is the limit imposed on the elements 
of the cycle set to be used in the Greedy Algorithm. The use of matroids and the 
Greedy Algorithm has been suggested by Kaveh [89,93,105], and they have been 
employed by Lawler [157] and Kolasinska [140]. 

Example 1:  Consider a planar graph S as shown in Figure 6.16, for which 
b1(S)=18 − 11+1=8. Using Algorithm 3, the selected basis consists of four cycles 
of length 3, three cycles of length 4 and one cycle of length 5, as follows: 

 C1 = (1,2,3),   C2 = (1,8,9),   C3 = (2,6,3),   C4 = (2,5,6),   C5 = (1,4,5,2) 

 C6 = (1,7,5,2),   C7 = (8,6,2,1),   C8 = (10,8,6,3,11). 

7
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Fig. 6.16   A planar graph S. 

The total length of the selected basis is L(C) = 29, which is a counter example for 
minimality of a mesh basis, since, for any such basis of S, L(C) > 29. 

Example 2: In this example, S is the model of a space frame, considered as 

,SS i
27

1i=
∪=  where a typical Si is depicted in Figure 6.17(a). For Si there are 12 

members joining 8 corner nodes, and a central node joined to these corner nodes. 
The model S is shown in Figure 6.17(b), in which some of the members are 
omitted for clarity in the diagram. For this graph, b1(S) = 270. 
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(a)  A typical Si (i=1,...,27).            (b)  S with some omitted members. 

Fig. 6.17   A space frame S. 

The selected cycle basis using any of the algorithms consists of 270 cycles of 
length 3, forming a minimal cycle basis of S. For Algorithm 3, the use of different 
starting nodes leads to a minimal cycle basis, showing the capability of this 
method.  

Example 3:  S is a planar graph with b1(S)=9, as shown in Figure 6.18. The 
application of Algorithm 3 results in the formation of a cycle of length 3 followed 
by the selection of five cycles of length 4. Then member {1,6} is used as the 
generator of a six-sided cycle C7 = (1,2,3,4,5,6,1). Member {2,10} is then 
employed to form a seven-sided cycle C8= (2,11,12,13,14,15,10,2), followed by 
the selection of a five-sided cycle C9 = (10,5,4,3,2,10). The selected cycle basis 
has a total length of L(C)=41, and is not a minimal cycle basis. A shorter cycle 
basis can be found by Algorithm 4 consisting of one three-sided and five four-
sided cycles, together with cycles, 

C7 = (1,2,10,5,6,1), C8 = (2,3,4,5,10,2) and C9 = (2,11,12,13,14,15,10,2), 

forming a basis with the total length of 40. However, the computation time and 
storage for Algorithm 3 is far less than that of Algorithm 4, as compared in Ref. 
[114]. 
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Fig. 6.18   A planar graph S. 
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6.8.2.1  SUBOPTIMAL CYCLE BASES ; A DIRECT APPROACH 

Definition 1:  An elementary contraction of a graph S is obtained by replacing a 
path containing all nodes of degree 2 with a new member. A graph S contracted to 
a graph S′  is obtained by a sequence of elementary contractions. Since in each 
elementary contraction, k nodes and k members are reduced, the first Betti number 
does not change in a contraction, i.e. b1(S) = b1( S′ ). As an example, S is 
contracted to S′  in Figure 6.19. 

m 1

 
(a)  S.                                           (b)  S′ . 

Fig. 6.19   S and its contracted graph S′ . 

This operation is performed in order to reduce the size of the graph and also 
because the number of members in an intersection of two cycles is unimportant; a 
single member is enough to render Ci ∩ Cj nonempty, and hence to produce a non-
zero entry in CCt. 

Definition 2:   Consider a member mi of a graph S. On this member, p minimal 
cycles of length q can be generated. p is called the incidence number and q is 
defined as the cycle length number of mi, respectively. In fact p and q are 
measures assigned to a member to indicate its potential as a member in the 
elements of a cycle basis. In the process of expansion for cycle selection, an 
artificial increase in p results in the exclusion of this element from a minimal 
cycle, keeping the number of overlaps as small as possible. 

Space graphs need special treatment. For these graphs, when a member has p=1, 
then the next shortest-length cycles with q′ = q+l (l being the next smallest 
possible integer) are also considered. Denoting the number of such cycles by p′ , 
the incidence number and cycle length number for this type of member are taken 
as, 

 ( ) ( ),p1 / qpqI       and      1pI c
jkjk ′+′′+=+′=  (6-21) 
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respectively. The end nodes of the considered member are j and k. 

Definition 3:   The weight of a cycle is defined as the sum of the incidence 
numbers of its members. 

Algorithm A 

Step 1:  Contract S into S′ , and calculate the incidence number (IN) and cycle 
length number (CLN) of all its members. 

Step 2:  Start with a member of the least CLN and generate a minimal weight cycle 
on this member. For members with equal CLNs, the one with the smallest IN 
should be selected. A member with these two properties will be referred to as ''a 
member of the least CLN with the smallest IN''.  

Step 3:  On the next unused member of the least CLN with the smallest IN, 
generate an admissible minimal weight cycle. In the case when a cycle of minimal 
weight is rejected due to inadmissibility, the next unused member should be 
considered. This process is continued as far as the generation of admissible 
minimal weight cycles is possible. After a member has been used as many times as 
its IN, before each extra usage, increase the IN of such a member by unity. 

Step 4:  On an unused member of the least CLN with the smallest IN, generate one 
admissible cycle of the smallest weight. This cycle is not a minimal weight cycle, 
otherwise it would have been selected at Step 3. Such a cycle is called a 
subminimal weight cycle. Again, update the incidence numbers for each extra 
usage. Now repeat Step 3, since the formation of the new subminimal weight cycle 
may have altered the admissibility condition of the other cycles, and selection of 
further minimal weight cycles may now have become possible. 

Step 5:  Repeat Step 4, selecting admissible minimal and subminimal weight 
cycles, until b1( S′ ) of these cycles are generated. 

Step 6:  A reverse process to that of the contraction of Step 1, transforms the 
selected cycles of S′  into those of S. 

This algorithm leads to the formation of a suboptimal cycle basis, and for many 
models encountered in practice, the selected bases have been optimal. 

6.8.2.2  SUBOPTIMAL CYCLE BASES ; AN INDIRECT APPROACH 

Definition 1:   The weight of a member in the following algorithm is taken as the 
sum of the degrees of its end nodes. 
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Algorithm B 

Step 1:  Order the members of S in ascending order of weight. In all the 
subsequent  steps use this ordered member set. 

Step 2:  Generate as many admissible cycles of length α as possible, where α is 
the length of the shortest cycle of S. Denote the union of the selected cycles by Cm. 
When α is not specified, use the value α = 3. 

Step 3:  Select an admissible cycle of length α+1 on an unused member (use the 
ordered member set). Once such a cycle 1mC +  is found, control the other unused 
members for possible admissible cycles of length α. Again select an admissible 
cycle of length α+1 followed by the formation of possible α-sided cycles. This 
process is repeated until no admissible cycles of length α and α+1 can be found. 
Denote the generated cycles by Cn. 

Step 4:  Select an admissible cycle Cn+1 of length α+2 on an unused member.  
Then check the unused members for the formation of α-sided cycles. Repeat Step 
2 until no cycle of length α or α+1 can be generated. Repeat Step 3 until no cycles 
of length α, α+1 or α+2 can be found. 

Step 5:  Take an unused member and generate an admissible cycle of minimal 
length on this member. Repeat Steps 1, 2 and 3. 

Step 6:  Repeat steps similar to that of Step 4 until b1(S) admissible cycles, 
forming a suboptimal cycle basis, are generated. 

Using the ordered member set affects the selection process in two ways: 

(1)  Generators are selected in ascending weight order, hence increasing the 
possibility of forming cycles from the dense part of the graph. This increases the 
chance of cycles with smaller overlaps being selected. 

(2)   From cycles of equal length formed on a generator, the one with smallest total 
weight (sum of the weights of the members of a cycle) is selected. 

The cycle bases generated by this algorithm are suboptimal; however, the results 
are slightly inferior to those of the direct method A. 
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6.8.2.3  EXAMPLES 

In this section, examples of planar and space frames are studied. The cycle bases 
selected by Algorithms A and B are compared with those developed for generating 
minimal cycle bases (Algorithms 1-4). Simple examples are chosen, in order to 
illustrate clearly the process of the methods presented. The models, however, can 
be extended to those containing a greater number of members and nodes of high 
degree, to show the considerable improvements to the sparsity of matrix D. 

Example 1:  Consider S as the graph model of a space frame with b1(S) = 12, as 
shown in Figure 6.20. Hence, 12 independent cycles should be selected as a basis. 
Algorithm 3 selects a minimal cycle basis containing the following cycles: 

 C1=(1,2,3), C2=(1,2,5), C3=(1,3,4),  C4=(1,5,4),   C5=(2,3,6,7),    
 C6=(3,4,7,8),   C7=(4,5,8,9),   C8=(6,7,8,9),    C9=(7,8,11,12),  
 C10=(6,7,10,11),   C11=(9,8,12,13),   C12=(10,11,12,13), 

which corresponds to:  

χ(C) = 4×3+8×4 = 44, 

and                           χ(D) = 12+2×23 = 58. 
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             (a)  A space structure.      (b)  The graph model  S of the structure. 

Fig. 6.20   A space frame, and CLNs and INs of its members. 

Using Algorithm A leads to the formation of a similar basis with the difference 
that 8C′ =(6,9,10,13) is generated in place of C8=(6,7,8,9), which leads to:  

χ( C′ ) = 4×3+8×4 = 44, 
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χ( D′ ) = 12+2×20 = 52. 

The CLNs and INs of the members used in this algorithm are illustrated in Figure 
6.20(a). 

Example 2:  In this example S is a space structure with b1(S) = 33, as shown in 
Figure 6.21(a). Both Algorithms 3 and A, select 33 cycles of length 4, i.e. a 
minimal cycle basis with χ(C) = 4×33=132 is obtained. The basis selected by 
Algorithm 3, contains (in the worst case) all 3-sided cycles of S, except those 
which are shaded in Figure 6.21(a), with χ(D) = 233. 

Algorithm A selects all 3-sided cycles of S except those shaded in Figure 6.21(b), 
with χ(D)=190. It will be noticed that, for structures containing nodes of higher 
degrees, considerable improvement is obtained by the use of Algorithm A. 

 
  (a) A minimal cycle basis.         (b) A suboptimal cycle basis. 

Fig. 6.21   Minimal and suboptimal cycle bases of S. 

Example 3: Consider a space frame as shown in Figure 6.22, for which b1(S)=10. 
The minimal cycle basis selected by Algorithm 3, consists of,  

C1= (1,2,3), C2= (4,5,6), C3= (7,8,9), C4= (10,11,12), 

C5= (1,2,5,4), C6= (2,3,6,5), C7= (4,5,8,7), C8= (5,6,9,8) , 

C9= (7,8,11,10), C10= (8,9,12,11), 

corresponding to χ(C) = 4×3+6×4 = 36 and χ(D) = 10+2[0+0+0+2+3+3+ 4+3+4] 
= 10+2×19 = 48. 

However, the following non-minimal cycle basis has a higher sparsity for C, and 
leads to a more sparse D, 

C1= (1,2,3), C2= (1,2,5,4), C3= (2,3,6,5), C4= (1,3,6,4),   
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C5= (4,5,8,7), C6= (5,6,9,8), C7= (4,6,9,7), C8= (7,8,11,10),  

C9= (8,9,12,11), C10= (10,11,12), 

for which χ( C′ ) = 2×3+8×4 = 38 corresponding, to χ( D′ ) = 10+2[1+2+3 
+1+2+3+1+2+2] = 10+2×17 = 44. 

The above cycle basis can further be improved by selecting the following basis: 

C1= (1,2,3), C2= (1,2,4,5), C3= (2,3,5,6), C4= (4,5,6),   

C5= (4,6,7,9), C6= (5,6,8,9), C7= (7,8,9), C8= (7,8,10,11),  

C9= (7,9,10,12), C10= (10,11,12), 

for which χ( C′ ) = 2×3+8×4 = 38 corresponding to χ( D′ ) = 10+2[1+2+2 
+1+2+2+1+3+2] = 10+2×16 = 42. 
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Fig. 6.22   A space frame S. 

Therefore, the idea of having an optimal cycle basis in between minimal cycle 
bases is false. 

6.8.3   FORMATION OF B0 AND B1 MATRICES 

In order to generate the elements of a B0 matrix, a basic structure of S should be 
selected. For this purpose a spanning forest consisting of NG(S) SRTs is used, 
where NG(S) is the number of ground (support) nodes of S. As an example, for S 
shown in Figure 6.23(a), two SR subtrees are generated, Figure 6.23(b). 
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(a)                                                      (b) 

Fig. 6.23   S and two of its SR subtrees. 

The orientation assigned to each member of S is from the lower numbered node to 
its higher numbered end. For each SR subtree, the orientation is given in the 
direction of its growth from its support node. 

MATRIX B0:  This is a 6M(S)×6NL(S) matrix, where M(S) and NL(S) are the 
numbers of members and loaded nodes of S, respectively. If all the free nodes are 
loaded, then NL(S) = N(S) − NG(S), where NG(S) is the number of support nodes. 

For a member, the internal forces are represented by the components at the lower 
numbered end. Obviously the components at the other end can be obtained by 
considering the equilibrium of the member. 

The coefficients of B0 can be obtained by considering the transformation of each 
joint load to the ground node of the corresponding subtree. [B0]ij for member i and 
node j is given by a 6×6 submatrix as, 

 [ ] ,

1     0      0       0x     y   
0     1      0x         0      z
0     0      1y         z      0
0     0      0        1       0       0
0     0      0       0        1       0
0     0      0       0       0        1

  αijij0

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆∆−
∆−∆
∆∆−

=B  (6-22) 

in which ∆x, ∆y and ∆z are the differences of the coordinates of node j with 
respect to the lower numbered end of member i, in the selected global coordinate 
system, and ∆ij is the orientation coefficient defined as: 
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⎪
⎩

⎪
⎨

⎧
−
+

=α
               j. node containing  treein thenot  ismember  if  0

j, containing  treein the oriented negatively ismember  if 1
j, containing  treein the oriented positively ismember  if 1

ij  

The B0 matrix can be obtained by assembling the [B0]ij submatrices as shown 
schematically in the following: 

 B 0   =    

    

     

 [B0]ij    

     

       

        

 

j

i 

6M(S)×6NL(S) 

(6-23) 

MATRIX B1:  This is a 6M(S)×6b1(S) matrix, which can be formed using the 
elements of a selected cycle basis. For a space structure, six self-equilibrating 
stress systems can be formed on each cycle. Consider Cj and take a member of this 
cycle as its generator. Cut the generator in the neighbourhood of its beginning 
node and apply six bi-actions as illustrated in Figure 6.24. 
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Fig. 6.24   A cycle and the considered bi-action at a cut. 

The internal forces under the application of each bi-action are a self-equilibrating 
stress system As for the matrix B0, a submatrix [B1]ij of B1 is a 6×6 submatrix, the 
columns of which show the internal forces at the lower numbered end of member i 
under the application of six bi-actions at the cut of the generator j. 
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 [ ] ,

1     0      0       0x     y   
0     1      0x         0      z
0     0      1y         z      0
0     0      0        1       0       0
0     0      0       0        1       0
0     0      0       0       0        1

  βijij1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆∆−
∆−∆

∆∆−
=B  (6-24) 

in which ∆x, ∆y and ∆z are the differences of the coordinates x, y and z of the 
beginning node of the generator j and the beginning node of the member i. The 
orientation coefficient ∆ij is defined as: 

⎪
⎩

⎪
⎨

⎧
−

+
=β

                        j. isgenerator   whosecycle in thenot  is imember  if   0  
j,on  generated cycle  theofn orientatio reverse  thehas imember  if  1

j,on  generated cycle  theofn orientatio same  thehas imember  if 1

ij  

The pattern of B1 containing [B1]ij  submatrices is shown in the following: 

 B 1   =    

       

       

    [B1]ij  
  

       

       

       

.

i 

j

6M(S)×6b1(S) 

(6-25) 

Subroutines for the formation of B0 and B1 matrices are included in the program 
presented in Ref. [112]. 

Example 1:  A four by four planar frame is considered as shown in Figure 6.25. 

 
Fig. 6.25   A four by four planar frame S. 
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The patterns of B0, B1 and 1
t
1BB  formed on selected SRT and the elements of the 

cycle basis selected by any of the methods of the previous section are depicted in 
Figure 3.26, corresponding to χ (B1) = 241 and χ ( 1

t
1BB ) =388. 

 

           (a) Pattern of B0             (b) Pattern of B1.         (c) Pattern of 1
t
1BB . 

Fig. 6.26   Patterns of B0, B1 and 1
t
1BB  matrices for S. 

Example 2:  A one-bay three-storey frame is considered as shown in Figure 6.27. 

 

Fig. 6.27   A simple space frame S. 

The patterns of B1 and 1
t
1BB  matrices formed on the elements of the cycle basis 

selected by any of the graph-theretical algorithms of the previous section are 
shown in Figure 6.28, corresponding to χ (B0) = 478, χ (B1) = 310 and χ ( 1

t
1BB ) 

=562. 
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         (a) Pattern of B0.                (b) Pattern of B1.               (c) Pattern of 1
t
1BB . 

Fig. 6.28   Patterns of B0, B1 and 1
t
1BB  matrices for S. 

The rest of the operations are routine work in the matrix analysis of structures. The 
interested reader may refer to standard textbooks such as those of McGuire and 
Gallagher [172], Prezemienecki [197], or Meek [173]. 

 

 

6.9 FORCE METHOD FOR THE ANALYSIS  

 OF PIN-JOINTED PLANAR TRUSSES 

The methods described in Section 6.8 are applicable to the selection of generalized 
cycle bases for different types of skeletal structures. However, the use of these 
algorithms for trusses engenders some problems, which are discussed in Ref. 
[108]. In this section, two methods are developed for selecting suitable GCBs for 
planar trusses. In both methods, special graphs are constructed for the original 
graph model S of a truss, containing all the connectivity properties required for 
selecting a suboptimal GCB of S.  

6.9.1  ASSOCIATE GRAPHS FOR SELECTION OF A SUBOPTIMAL GCB 

Let S be the model of a planar truss with triangulated panels, as shown in Figure 
6.29. The associate graph of S, denoted by A(S), is a graph whose nodes are in a 
one-to-one correspondence with triangular panels of S, and two nodes of A(S) are 
connected by a member if the corresponding panels have a common member in S. 
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Fig. 6.29   A planar truss S and its associate graph A(S). 

If S has some cut-outs, as shown in Figure 6.30, then its associate graph can still 
be formed, provided that each cut-out is surrounded by triangulated panels. 

For trusses containing adjacent cut-outs, a cut-out with cut-nodes in its boundary, 
or any other form violating the above-mentioned condition, extra members can be 
added to S. The effect of such members should then be included in the process of 
generating its self-equilibrating stress systems. 

 
Fig. 6.30   S with two cut-outs and its A(S). 

Theorem A:  For a fully triangulated truss (except for the exterior boundary), as in 
Figure 6.30, the dimension of a statical basis γ(S) is equal to the number of its 
internal nodes, which is the same as the first Betti number of its associate graph, 
i.e.  

 γ(S) = Ni(S) = b1[A(S)]. (6-26) 

Proof: Let M´ and N´ be the numbers of members and nodes of A(S), respectively. 
By definition:  

N´= R(S) −1, 

and     M´= Mi (S) = M(S)−Me(S) = M(S)−Ne(S) = M(S)−[N(S) −Ni (S)]. 
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Thus:  b1[A(S)] = M´− N´+ 1 = 

                        = M(S) − [N(S)−Ni(S)]−R(S)+1+1 = 2 − R(S)+M(S) −N(S)+ Ni(S). 

By Euler´s polyhedron formula, we have: 

2 − R(S) + M(S) −N(S) = 0. 

Therefore: 

b1[A(S)] = Ni(S). 

For trusses which are not fully triangulated, as described in Chapter 2, we have: 

γ(S) = Ni(S) −Mc(S).                                      (6-27) 

A Cycle of A(S) and the Corresponding γ-Cycle of S: In Figure 6.31(a), a 
triangulated truss and its associate graph, which is a cycle, are shown for which:  

γ(Si) = Ni = 1 = b1[A(S)]. 

Since C1 of A(S) corresponds to one γ-cycle of S, it is called a type I cycle,  
denoted by CI. Typical γ-cycles of S are shown by continuous lines, and their γ-
chords are depicted in dashed lines. 

 

(a) A type CI cycle.                 (b)  A type CIII cycle. 

Fig. 6.31   Two different types of cycle. 

Figure 6.38(b) shows a truss unit with one cut-out. In general, if a cut-out is an m-
gone, then the completion of the triangulation requires m−3 members. Instead, m 
internal nodes will be created, increasing the DSI by m. Hence Eq. (6-27) yields, 

γ(S) = m − (m −3) = 3, 



198                                             Structural Mechanics; Graph and Matrix Methods 

 

 

198

while:                                  b1[A(S)] = 1. 

However, in this case, S contains three γ-cycles. A γ-path P and three γ-chords 
(dashed lines) are depicted in Figure 6.31(b). Obviously, P∪mi (i=1,2,3) form 
three γ-cycles which correspond to a cycle of type CIII of A(S). Thus two types of 
cycles CI and CIII should be recognized in A(S) and an appropriate number of γ-
cycles will then be generated.  

Algorithm AA 

Step 1: Construct the associate graph A(S) of S. 

Step 2: Select a mesh basis of A(S), using an appropriate cycle selection 
algorithm. For fully triangulated S, Algorithms 1-3 generate cycle 
bases with 3-sided elements 

Step 3: Select the γ-cycles of S corresponding to the cycles of A(S). One γ-
cycle for each cycle of type CI, and three γ-cycles for each cycle of 
type CIII, should be chosen. 

Once a GCB is selected, on each γ-cycle one self-equilibrating stress system can 
easily be formed. Therefore, a statical basis with localized self-equilibrating stress 
systems will be obtained. 

Example:   Let S be the graph model of a planar truss, as shown in Figure 6.30, 
for which γ(S)=12. For A(S), six cycles of length 6 of type CI and two cycles of 
lengths 18 and 26 of type CIII are selected. Therefore, the total of 6 + 3×2 = 12 γ-
cycles of S are obtained. On each γ-cycle one self-equilibrating stress system is 
constructed, and a statical basis consisting of localized self-equilibrating stress 
systems is thus obtained. 

6.9.2   A BIPARTITE GRAPH FOR SELECTION OF A SUBOPTIMAL GCB 

Let S be a planar truss consisting of rectangular panels with or without diagonal 
members, an example of which is shown in Figure 6.32(a). The bipartite graph 
B(S) of S is constructed as follows: 

Associate one with each row of panels and denote them by r1, r2, …, rm. Similarly, 
with each column of panels, associate one node and denote them by c1, c2, …, cn, 
as illustrated in Figure 6.32(b). Connect ri to cj if the corresponding panel in S has 
a diagonal member. The graph obtained in this manner is called the bipartite 
graph B(S) of S. 
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                                                (a)                            (b)  

Fig. 6.32   A graph S and its bipartite graph B(S). 

Theorem B:  The degree of statical indeterminacy of a planar truss S, is the same 
as the first Betti number of its bipartite graph B(S), i.e. 

 ( ) ( )[ ].SBbSγ 1=  (6-28) 

Proof:   For a truss of rectangular shape with rectangular panels and without 
diagonal members, the number of members M  and nodes N are as: 

( )[ ] ( ) ( )[ ] n,2mnmn1n341m1n34M ++=−−+−+−+=  

           ( ) ( )1n 1mN ++= . 

For M′  extra diagonal members, M  is increased by M(B(S)), which is the same 
as the number of members of B(S). 

By definition, the number of nodes of B(S) is N(B(S)) = m+n, 

and    M(S) = m+2mn+n+M(B(S) = N  = mn+m+n+1 

Therefore:  

   ( ) ( ) ( ) 3S2NSMSγ +−=  

    = ( )( ) ( ) 31nmmn2SBMn2mnm ++++−+++  

    = ( )( ) ( )( ) ( )[ ].SB b1SBNSBM 1=+− . 
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A Cycle of B(S) and the Corresponding γ-Cycle of S: A cycle of B(S) 
corresponds to a subgraph of S which contains a γ-cycle. In Figure 6.32, a cycle of 
B(S) and its corresponding subgraph containing a γ-cycle of S are illustrated in 
bold lines. For this formation, r1 and r2 are specified as rmin and rmax. All cis which 
have links with two rks with rmin ≤ rk ≤ rmax, should be considered in the formation 
of the corresponding γ-cycle. For this cycle, only c1 and c2 have such properties. 

Therefore, the subgraph of S situated in row r1 and r2, and columns c1 and c2 are 
those which contain a γ-cycle. For simplicity, a cycle and its γ-cycle are denoted 
by, 

 ( )2121i c,c,r,rC   and ( ),c,c,r,rC-γ 2121i  (6-29) 

and for ( ),c,c,r,rC 4143j  we have ( )432143j c,c,c,c,r,rCγ − .  

This means that a γ-cycle can be formed on a subgraph of S, which contains row 3 
and 4, and columns 1, 2, 3 and 4 of S. 

General Cases: For an irregularity in the pattern of the boundary, as that of Figure 
6.33, the above method can still be used. The additional part contains M = 
2 N members, leaving γ(S) = M(S) – 2N(S)+3 unchanged. On the other hand, 
M(B(S)) and N(B(S)) are not affected. Hence b1[B(S)] = M (B(S)) − N(B(S)) + 1 
is unaltered, and γ(S) = b1[B(S)] still holds. 

 
Fig. 6.33   A truss model S with irregular boundary. 

Algorithm BB 

Step 1: Construct the bipartite graph B(S) of S. 

Step 2: Select a subminial cycle basis of B(S). 

Step 3: Find the subgraphs of S corresponding to the cycle of the selected basis 
of B(S) at Step 2. 
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Now one S.E.S. can be formed on each subgraph of S containing a γ-cycle of S. 

For localizing the S.E.Ss, the cycle for which |rmin – rmax| + |cmax – cmin| has the 
smallest value should be chosen. The value |cmax – cmin| can be obtained once rmax 
and rmin are determined. Due to the simplicity of the structure of B(S), the 
formation of cycle of short lengths leading γ-cycles of S becomes almost trivial.  

Example:  Let S be the graph model of a planar truss, as shown in Figure 6.32(a). 
The bipartite graph B(S) of S is constructed as in Figure 6.32(b). For this 
structure, 

( ) ( ) ( ) 6,612SMSNSγ ci =−=−=  

and six γ-cycles are selected. The following cycles of B(S) and the corresponding 
subgraphs of S containing the elements of a GCB are obtained: 

  ( )21211 c,c,r,rC    ( )21211 c,c,r,rCγ −  

  ( )41212 c,c,r,rC    ( )4321212 c,c,c,c,r,rCγ −  

  ( )41323 c,c,r,rC    ( )4321313 c,c,c,c,r,rCγ −  

  ( )41434 c,c,r,rC   ( )4321434 c,c,c,c,r,rCγ −  

  ( )51315 c,c,r,rC     ( )543213215 c,c,c,c,c,c,r,rCγ −  

  ( )53316 c,c,r,rC    ( )5433216 c,c,c,c,r,rCγ −  

Finally, it should be noted that Algorithm AA is more suitable for triangulated 
trusses, with or without cut-outs, while Algorithm BB is more appropriate for 
trusses with rectangular panels, with or without diagonal members. 

 

6.10  FORCE METHOD OF ANALYSIS  

 FOR GENERAL STRUCTURES  

Combinatorial methods for the force method of structural analysis have been 
presented in previous sections. These methods are very efficient for skeletal 
structures, and in particular for rigid-jointed frames. For a general structure, the 
underlying graph or hypergraph of a self-equilibrating stress system has not yet 
been properly defined, and much research has still to be done. Algebraic methods, 
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on the other hand, can be formulated in a more general form to cover different 
types of structures, such as skeletal structures and finite element models. The main 
drawbacks of these methods are the larger storage requirements, and the higher 
number of operations. 

These difficulties can partially be overcome by employing combinatorial 
approaches within the algebraic methods, whenever such tools are available, and 
their use can lead to some simplifications. 

6.10.1  ALGEBRAIC METHODS 

Consider a discrete or discretized structure S, which is assumed to be statically 
indeterminate. Let r denote the m-dimensional vector of generalized independent 
element (member) forces, and p the n-vector of nodal loads. The equilibrium 
conditions of the structure can then be expressed as, 

 Ar = p, (6-30) 

where A is an n×m equilibrium matrix. The structure is assumed to be rigid, and 
therefore A has a full rank, i.e. t = m − n > 0 and rank A = n. 

The member forces can be written as 

 r = B0p + B1q, (6-31) 

where B0 is an m×n matrix such that AB0 is an n×n identity matrix, and B1 is an 
m×t matrix such that AB1 is an n×t zero matrix. B1 and B1 always exist for a 
structure, and in fact many of them can be found for a structure. B1 is called a self-
stress matrix as well as null basis matrix.  Each column of B1 is known as a null 
vector. Notice that the null space, null basis and null vectors correspond to 
complementary solution space, statical basis and self-equilibrating stress systems, 
respectively, when S is taken as a general structure. 

Minimizing the potential energy requires that r minimize the quadratic form, 

 ,m
t

2
1 rFr  (6-32) 

subject to the constraint as in Eq. (6-30). Fm is an m×m block diagonal element 
flexibility matrix. Using Eq. (6-31), it can be seen that q must satisfy the following 
equation, 

 ( t
1B FmB1)q =  − t

1B FmB0p, (6-33) 
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where t
1B FmB1 = G is the overall flexibility matrix of the structure. Computing the 

redundant forces q from Eq. (6-33), r can be found using Eq. (6-31). The structure 
of G, is again important, and its sparsity, bandwidth and conditioning govern the 
efficiency of the force method. For the sparsity of G one can search for a sparse B1 
matrix, which is often referred to as the sparse null basis problem. 

Many algorithms exist for computing a null basis B1 of a matrix A. For the 
moment, let A be partitioned so that, 

 AP = [A1 , A2], (6-34) 

where A1 is n×n and non-singular, and P is a column permutation matrix that may 
be required in order to ensure that A1 is non-singular. One can write: 

 .2
1

11 ⎥
⎦

⎤
⎢
⎣

⎡−=
−

I
AAPB  (6-35) 

[ ] .0 2
1

1211 =⎥
⎦

⎤
⎢
⎣

⎡−=
−

I
AAAAAB  

Obviously, a permutation P that yields a non-singular A1 matrix, can be chosen 
purely symbolically, but this says nothing about the possible numerical 
conditioning of A1 and the resulting B1. 

In order to control the numerical conditioning, pivoting must be employed. There 
are many such methods based on various matrix factorizations, including the 
Gauss-Jordan elimination, QR, LU, LQ and Turn-back method. Some of these 
methods are briefly studied in the following: 

Gauss-Jordan Elimination Method: In this approach, one creates an n×n identity 
matrix I in the first columns of A by column changes and a sequence of n pivots. 
This procedure can be expressed as, 

 GnGn-1 ... G2G1AP = [I , M], (6-36) 

where Gi is the ith pivot matrix and P is an m×m column permutation matrix (so Pt 
= P) and I is an n×n identity matrix, and M is an n×t matrix. A pivot matrix Gi is a 
diagonal matrix whose ith diagonal entry is the ith pivot. We denote GnGn-1 ... 
G2G1 by G, where G is a diagonal matrix whose diagonal entries are the scaling 
constants. Scaling, means simply to perform row operations. 

Equation (6-36) can then be written as, 
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 GAP = [I , M], (6-37) 

or AP = G−1[I , M] = [G−1 , G−1M], (6-38) 

which can be regarded as Gauss-Jordan factorization of A, and 

 ⎥
⎦

⎤
⎢
⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡
=

1   
M

PB
0
G

PB      and       10 . (6-39) 

Example 1:  The four by four planar frame of Figure 6.25 is reconsidered. The 
patterns of B1 and 1

t
1BB  formed by the Gauss-Jordan elimination method, are 

depicted in Figure 6.34, corresponding to χ(B1) = 491 and χ( 1
t
1BB ) =1342. 

 

(a) Pattern of B1.                       (b) Pattern of 1
t
1BB . 

Fig. 6.34   Patterns of B1 and 1
t
1BB  matrices for S. 

Example 2:  The three-storey frame of Figure 6.27 is re-considered, and the 
Gauss-Jordan elimination method is used. The patterns of B1 and 1

t
1BB  matrices 

formed are shown in Figure 6.35, corresponding to χ(B1) = 483 and χ( 1
t
1BB ) 

=1592. 
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  (a)  Pattern of B1.          (b) Pattern of 1
t
1BB . 

Fig. 6.35   Patterns of B1 and t
1B B1 matrices for S. 

LU Decomposition Method:  Using the LU decomposition method, one obtains 
the LU factorization of A as: 

 PA = LU                 ],,[ 21 UUPU =                         (6-40) 

P and P  are again permutation matrices of order n×n and m×m, respectively. 
Now B0 and B1 can be written as: 

.  and  2
1

11
11

10 ⎥
⎦

⎤
⎢
⎣

⎡−=⎥
⎦

⎤
⎢
⎣

⎡
=

−−−

I
UUPB

0
PLUPB                    (6-41) 

Example 1:  The four by four planar frame of Figure 6.25 is re-considered. The 
patterns of B0, B1 and 1

t
1BB  formed by the LU factorization method, are depicted 

in Figure 6.36. The sparsity for the corresponding matrices are χ (B0) = 280, χ(B1) 
= 408 and χ( 1

t
1BB ) =1248. 
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          (a) Pattern of B0.             (b) Pattern of B1.            (c) Pattern of 1
t
1BB . 

Fig. 6.36   Patterns of B1 and 1
t
1BB  matrices for S. 

Example 2:  The three-storey frame of Figure 6.27 is re-considered, and the LU 
factorization method is used. The patterns of B0, B1 and 1

t
1BB  matrices formed are 

shown in Figure 6.37, corresponding to χ(B0) = 287, χ(B1) = 504 and χ( 1
t
1BB ) 

=1530. 

 

             (a) Pattern of B0.           (b) Pattern of B1.          (c) Pattern of 1
t
1BB . 

Fig. 6.37   Patterns of B1 and 1
t
1BB  matrices for S. 



CHAPTER 6 Matrix Force Method...                                                                 207 

 

 

207

QR Decomposition Method:  Using a QR factorization algorithm with column 
pivoting yields, 

 AP = Q [R1 , R2], (6-42) 

where P is again a permutation matrix, and R1 is an upper triangular matrix of 
order n. B1 can be obtained as: 

 .2
1

11 ⎥
⎦

⎤
⎢
⎣

⎡−=
−

I
RRPB  (6-43) 

Turn-Back LU Decomposition Method:  Topçu developed a method, the so-
called Turn-back LU procedure, which is based on LU factorization and often 
results in highly sparse and banded B1 matrices. Heath et al. [74] adopted this 
method for use with QR factorization. Due to the efficiency of this method, a brief 
description of their approach will be presented in the following. 

Write the matrix A = (a1,a2,...,an) by columns. A start column is a column such that 
the ranks of (a1,a2,...,as-1) and (a1,a2,...,as) are equal. Equivalently, as is a start 
column, if it is linearly dependent on lower-numbered columns. The coefficients 
of this linear dependency give a null vector whose highest numbered non-zero is 
in position s. It is easy to see that the number of start columns is m − n = t, the 
dimension of the null space of A. 

The start column can be found by performing a QR factorization of A, using 
orthogonal transformations to annihilate the subdiagonal non-zeros. Suppose that 
in carrying out the QR factorization we do not perform column interchanges but 
simply skip over any columns that are already zero on and below the diagonal. 
The result will then be a factorization of the form 

                    (6-44) 

The start columns are those columns where the upper triangular structure jogs to 
the right; that is, as is a start column if the highest non-zero position in column s of 
R is no larger than the highest non-zero position in earlier columns of R. 
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The Turn-back method finds one null vector for each start column as by "turning 
back" from column s to find the smallest k for which columns as,as-1,...,as-k are 
linearly dependent. The null vector has a non-zero only in position s−k through s. 
Thus, if k is small for most of the start columns, then the null basis will have a 
small profile. Notice that the turn-back operates on A, and not on R. The initial 
QR factorization of A is used only to determine the start columns, and then 
discarded. 

The null vector that Turn-back finds from start column as may not be non-zero in 
position s. Therefore Turn-back needs to have some way to guarantee that its null 
vectors are linearly independent. This can be accomplished by forbidding the left-
most column of the dependency for each null vector from participating in any later 
dependencies. Thus, if the null vector for start column as has its first non-zero in 
position s−k, every null vector for a start column to the right of as will be zero in 
position s−k. 

Although the term "Turn-back" is introduced in Ref. [238], the basic idea had also 
been used in Refs. [89,93,94]. Since this correspondence simplifies the 
understanding of the Turn-back method, it is briefly described in the following. 

For the Algorithm 1 of Section 6.8.2, the use of an SRT orders the nodes and 
members of the graph simultaneously, resulting in a fairly banded member-node 
incidence matrix B. Considering the columns of B corresponding to tree members 
as independent columns, effectively a cycle is formed on each ordered chord (start 
column) by turning back in B and establishing a minimal dependency, using the 
tree members and previously used chords. The cycle basis selected by this process 
forms a base for the cycle matroid of the graph, as it is described in Kaveh 
[89,105]. Therefore, the idea used in Algorithm 1 and its generalization for the 
formation of generalized cycle bases in Refs. [89,94] seem to constitute a similar 
idea to that of the algebraic Turn-back method. 

Example 1:  The four by four planar frame of Figure 6.25 is re-considered. The 
patterns of B0, B1 and 1

t
1BB  formed by the Turn-back LU factorization method are 

depicted in Figure 6.38, corresponding to χ(B0) = 175, χ(B1) = 240 and χ( 1
t
1BB ) = 

408. 
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           (a) Pattern of B0               (b) Pattern of B1.               (c) Pattern of 1
t
1BB . 

Fig. 6.38   Patterns of B0, B1 and 1
t
1BB  matrices for S. 

Example 2:  The three-storey frame of Figure 6.27 is re-considered, and the Turn-
back LU factorization method is used. The patterns of B0, B1 and 1

t
1BB  matrices 

formed are shown in Figure 6.39, corresponding to χ(B0) = 160, χ(B1) = 476 and 
χ( 1

t
1BB ) = 984. 

 

         (a) Pattern of B0               (b)  Pattern of B1.             (c) Pattern of 1
t
1BB . 

Fig. 6.39   Patterns of B0, B1 and 1
t
1BB  matrices for S. 
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A comparative study of various force methods has been made in Ref. [112]. 

Many algorithms have been developed for selection of null bases, and the 
interested reader may refer to Refs. [29,58,87,196,238]. 

 

6.11  OPTIMAL PLASTIC ANALYSIS AND DESIGN OF FRAMES 

The problem of plastic analysis and design of rigid-jointed skeletal structures was 
cast in the form of a mathematical programming with a linear objective function 
subjected to linear constraint by Charnes et al. [23], as early as 1951. Further 
progress in this field is due to Baker and Heyman [5], Horne [81], Thierauf [233], 
Tam [230], Mokhtar-zadeh and Kaveh [176] among many others. Considerable 
progress has been made in the last decades; a complete list of references may be 
found in Munro [177], and Livesley [160]. 

In this section, efficient programs are developed for optimal safe plastic analysis 
and design of frames. These problems are formulated in linear programming form, 
and graph-theretical approaches are used for the formation of highly sparse 
equilibrium equations as constraints of the optimisation approach. 

6.11.1  FORMULATION 

The following assumptions are made to simplify the formulation of the plastic 
analysis and design of frames: 

1.  Equilibrium equations are referred to the un-deformed geometry of the 
structure. 

2.  Plastic hinges are considered at critical section, with unlimited ductility. 

3.  The loads are assumed to increase proportionally. 

4.  Constraints are related only to bending moment yield conditions, and to the 
design considerations. 

5.  The effect of axial forces and shear forces is neglected. 

For a static approach, the distribution of the internal forces at critical sections can 
be written as: 

 r = B0p + B1q, (6-45) 
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Consider a two-storey frame as shown in Figure 6.40 for which  γ(S) = 6, and the 
number of critical sections is 11, as marked. 

P

P
P

1

2 3

4

5 6
7

8

9

10
11

3m

1

2

3

3m

4m

4m

 

Fig. 6.40   A two-storey frame and its critical sections. 

Cuts can be introduced at the end of two beams, to transform the model into a 
determinate one, in the form of two subtrees. The distribution of moments at the 
critical sections (M1, M2, … , M11) of these subtrees, can then be calculated under 
the unit values of the applied loads P1, P2, P3 and bi-actions R1, R2, R3, R4, R5 and 
R6.  

Using Eq. (6-45), the bending moments corresponding to internal loads can be 
expressed as: 

 Mr = M0p + M1q. (6-46) 

For the considered example, M0 and M1 are 11×3 and 11×6 matrices, respectively. 
In general, the dimensions of these matrices are c×l and c×k, respectively, where c, 
l and k are the number of critical sections, number of applied load components and 
the number of redundants of the structure, respectively. 

6.11.2  OPTIMAL SAFE PLASTIC ANALYSIS OF FRAMES 

In the safe analysis of frames, the least value of the load factor λ should be found 
subjected to the equilibrium and yield conditions. Consider Mp as a c×l vector 
containing the full plastic moments of the members at critical sections. The 
mathematical formulation of the problem can be stated as 

Maximize λ 

subject to  
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,)( p1fe0 TMXMMPM ≤++λ    (6-47) 

where T is a Boolean matrix consisting of 0 and 1 entries. The tij=1 if the jth 
plastic moments has to be considered in limiting the bending moment at section i, 
and tij=0 otherwise. Mfe contains the fixed end moments, added due to the 
presence of span loads. 

Equation (6-47) can be written as: 

.)( p1fe0p TMXMMPMTM ≤++λ≤−       (6-48) 

For unrestricted variables X, the following transformation is considered to obtain 
non-negative optimisation variables X : 

 ,ΩXX += (6-49) 

in which Ω is a large positive number. Therefore: 

.)()( p1fe0p TMXMMPMTM ≤Ω−++λ≤−          (6-50) 

Denoting,  

 Ma = M0P + Mfe, (6-51) 

the constraints become, 

,
c
b

1a
1a

⎥⎦
⎤

⎢⎣
⎡≤⎥⎦

⎤
⎢⎣
⎡λ

⎥⎦
⎤

⎢⎣
⎡

−− M
M

XMM
MM            (6-52) 

with 

,0≥X  

and 

Mb = TMp + ΩM1, 

Mc = TMp + ΩM1. 

The dimension of the coefficient matrix of the constraints is 2c×(ρ+1).  
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6.11.3  OPTIMAL SAFE PLASTIC DESIGN 

For optimal design, if the model contains a single prismatic member of design 
variable d1, then clearly the design objective could be to minimize subject to the 
imposed constraints. If two prismatic members of lengths L1 and L2 were being 
fixed throughout design variables d1 and d2, then the importance of the design 
variables would be controlled by those lengths. In deciding how best to allocate 
structural material between the two members, one could weight the design 
variables by their lengths, and this suggests a convenient linearized objective 
function Z as  

 Z = L1d1 + L2d2. (6-53) 

This can be generalized to a structure with g design variables as, 

 ∑
=

=
g

1i
ii ,dLZ (6-54) 

where Li is the length of all the members with design variable di, and g is the total 
number of design variables (groups), respectively.  

It is justified that the minimization of Z can approximately be achieved by 
considering a linearized objective function W as the total weight of the structure 
as, 

 ∑
=

=
g

1i
pii ,MLW (6-55) 

where Mpi is the plastic moment of a member of group i. The above function can 
be written in matrix form as 

W = LtMp.              (6-56) 

Now the problem of optimal plastic design can be stated as: 

Minimize W 

subject to:  

.)( p1fe0 TMXMMPM ≤++λ             (6-57) 
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Since the redundants may have negative values, therefore the following 
transformation is performed on Eq. (6-57) to avoid such negative values in the 
mathematical programming: 

Y = Ω+X, 

.)()( p1fe0p TMΩYMMPMTM ≤−++λ≤−           (6-58) 

Denoting, 

 ).( 1fe0d ΩMMPMM −+=  (6-59) 

the constraints in matrix form become, 
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M
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TM             (6-60) 

with 

 Y ≥ 0 and Mp ≥ 0. (6-61) 

The dimension of the coefficient matrix of the constraints is 2c×(ρ+g). 

6.11.4  FORMATION OF M0 AND M1 MATRICES 

A cycle basis is first selected, using the any algorithm of Section 6.8.2.1. The 
generators of the selected cycles are then cut to transform the graph model into a 
spanning forest. The structure corresponding to this forest is statically determinate 
and can be used as a primary structure, to form the particular solution. This forest 
transfers the joint and span loads to the ground tree nodes. 

The orientation assigned to each member, is taken from the first end (lower 
numbered node) to the last end (higher numbered node). For each subtree of the 
forest, the orientation is in the direction of its natural expansion (growth) from its 
ground node (root). 

The moment produced at the end of member i, when load at joint j is applied, is 
given as, 
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where px, py and mz are the components of the applied load on node j, and δx and 
δy are the difference in coordinates x and y of the two ends of the member i from 
node j, respectively. The indices 1 and 2 show the first end node and the last end 
node of the corresponding parameters, and αij is defined as Section 6.8.3. 

The position of M0ij in M0 is similar to that of the position of B0ij in B0 according 
to Eq. (6-23). 

For the presence of span loads, the effect of the transferred bending moments at 
their corresponding critical sections is also considered. 

In order to form the M1 matrix, every cycle is oriented as its generator, and cut at 
the first end of its generator. Bi-actions are then applied at the two cut ends. The 
bending moments at the first and last ends of member i, due to bi-actions at 
generator j, are given as 
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in which Xx, Xy and Xz are the components of bi-actions on the first end of the 
generator j, and δx and δy are the difference in coordinates x and y of the two end 
nodes of member i from the first end of the generator j, respectively. βij is the 
orientation factor similar to Eq. (6-24). 

The position of M1ij in M1 is similar to that of the position of B1ij in B1 according 
to Eq. (6-25). 

For extra critical sections under span loads, the effects of redundants at these 
sections should also be calculated. 

6.11.5  STANDARD MATHEMATICAL PROGRAMMING FORMULATION 

In order to transform the problems of optimal plastic analysis and design to 
standard forms, the inequalities involved should be transformed to equalities. For 
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this purpose some slack variables Ys and Zs are introduced. For plastic analysis, 
variables Ys are add to inequalities, and  

⎥⎦
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is obtained. For optimal plastic design, variables Zs are added to inequalities and 
hence the following form is obtained: 

.
d
d

s

p
2a
1a

⎥⎦
⎤

⎢⎣
⎡−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ λ
⎥⎦
⎤

⎢⎣
⎡

−−
−

M
M

Z
MBTM

BTM   (6-65) 

In the mathematical programming problems, constraints corresponding to Eq. (6-
52) and Eq. (6-60), the right-hand constants must be positive. Therefore in general 
form, the conditions ≤ and ≥, four inequalities may result. Transformation of these 
conditions to a standard form of LP problem requires slack and artificial variables 
to be considered in the left-hand side of the constraints. In the above equations A1 
and A2 or B1 and B2 are matrices having +1 and −1 entries depending on a typical 
entry (i,j) of these matrices, corresponding to jth slack or artificial variable, 
respectively, and zero otherwise. 

Once the standard forms are obtained, any program on simplex method can be 
used for the solution. 

6.11.6  NUMERICAL RESULTS 

Example 1:  A two-storey frame is considered as shown in Figure 6.41. Four 
groups of plastic moments are taken as design variables. An optimal design is 
performed and the following results are obtained: 

For the columns of the first floor Mp1=3.0kN.m, and columns of the second floor 
Mp2=1.5kN.m. For beams of the first and second floor, Mp3=4.5kN.m and 
Mp4=1.5kN.m are selected, respectively.  

The total minimum weight is calculated as 51.0kN.m2. 
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Fig. 6.41   A two-storey frame. 

Example 2:  A two-span frame is considered as shown in Figure 6.42. Four 
groups of plastic moments are taken as design variables. An optimal design is 
performed and the following results are obtained: 

For the columns Mp3=27kN.m, and for beams Mp1=77kN.m and Mp2=59kN.m, are 
selected, respectively. The total minimum weight is calculated as 1059 kN.m2. 

3m3m 3m3m

3m

68kN

51kN

p1 p2

68kN

M
M

M
M

Mp3 p3 p3

 

Fig. 6.42   A two-span frame. 

The methods presented in this section are simple and efficient and require exactly 
the same data as a kinematic approach. These methods are applicable to structures 
of arbitrary configuration, and can easily be modified for structures with non-
prismatic members. 

 

EXERCISES 

6.1 For each set of integers a, b and c of Table 2.1, draw an  arbitrary γ-tree and 
a γ-cycle. 
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6.2 Construct a γ-tree for the following graph when it is viewed as the graph 
model of a planar truss: 

 

6.3 In Exercise 4.2, select a fundamental γ-cycle basis of S and form its γ-cycle 
adjacency matrix. 

6.4 Find a graph for which Algorithm 3 fails to select a minimal cycle basis. 
Repeat this exercise for Algorithm 2. 

6.5 Form B0 and B1 matrices, by selecting a suitable SRT and cycle basis for 
the following planar frame: 

h

h

h

L
100kN

100kN

100kN

 

6.6 Form B0 and B1 for the planar truss of Exercise 4.2, when it is supported in 
a statically determinate fashion. Choose the support nodes arbitrarily. 

6.7 Prove the minimality of the cycle basis selected by Horton´s algorithm. 

6.8 Find a counter-example for the minimality of the cycle basis selected by 
Algorithm 3 for planar structures. 

6.9 Why do the regional cycles of a planar graph form a cycle basis (mesh 
basis)? 
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6.10 Use a combinatorial method, to generate minimal and suboptimal cycle 
bases for the following graphs: 

 


