CHAPTER 5

Matrix
Displacement Method

5.1 INTRODUCTION

In the last half-century, considerable progress has been made in the matrix
analysis of structures. The topic has been generalized to finite elements, and
extended to the stability, non-linear and dynamic analysis of structures. This
progress is due to the simplicity, modularity and flexibility of matrix methods.

Many textbooks covering these methods have been published including Argyris
[4], McGuire and Gallagher [172], Livesley [160], Meek [173], Kardestuncer [88],
ad Vanderbilt [242] among many others. In these books the displacement method
of structural analysis is thoroughly developed, and therefore only a brief
introduction will be presented here.

5.2 FORMULATION

In Chapter 4, the network-topological formulation of the displacement (stiffness)
method of structural analysis has already been presented. In this section, a matrix
formulation using the basic tools of structural analysis - equilibrium of forces,
compatibility of displacements, and force-displacement relationships - is provided.
The notations are chosen from the most popularly encountered versions in
structural mechanics.
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Consider a structure S with M members and N nodes; each node having one
degree of freedom. The kinematical indeterminacy of S may then be determined
as,

nE®)=aN-4, (5-1)

where f is the number of constraints due to the support conditions. As an example,
n(S) for the planar truss S depicted in Figure 5.1(a) is given by n(S)=2x5-3 =

7, and for the space frame shown in Figure 5.1(b), it is calculated as n(S) = 6x8
—6x4 =24,
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(a) A planar truss. (b) A space frame.

Fig. 5.1 The degrees of freedom of the joints for two structures.

One can also calculate n(S) by simple addition of the degrees of freedom of the
joints of the structure, i.e. for the truss S, n(S) =2 + 2 + 2 + 1= 7, and for the
frame n(S) = 4x6 = 24.

Let p and v represent the joint loads and joint displacements of a structure. Then
the force-displacement relationship for the structure can be expressed as,

p = Kv, (5-2)
where K is a nNxnN symmetric matrix, known as the stiffness matrix of the

structure. Expanding the ith equation of the above system, the force p; can be
expressed in terms of the displacements v Vo v\t as:

P =K vy +Kipvy + o+ KV (5-3)

A typical coefficient Kj; is the value of the force p; required to be applied at the ith
component of the structure, in order to produce a displacement v;=1 at j and zero
displacements at all the other components.
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As has been shown in Chapter 4, the member forces r can be related to nodal
forces p by:

p = Br. (5-4)
Similarly, the joint displacements v can be related to member distortions u by:

u = Blv. (5-5)
For each individual member of the structure, the member forces can be related to
member distortions by an element stiffness matrix kn. A block diagonal matrix
containing these element stiffness matrices is known as the unassembled stiffness
matrix of the structure, denoted by k. Obviously:

r = ku. (5-6)
This equation together with Egs (5-4) and (5-5) yields:

p = BKB'v. (5-7)

Therefore,

K = BKB' (5-8)
is obtained. The matrix K is singular since the boundary conditions of the
structure are not yet applied. For an appropriately supported structure, the deletion
of the rows and columns of K corresponding to the support constraints results in a
positive definite matrix, known as the reduced stiffness matrix of the structure.

Let us illustrate the method by means of a simple example. Consider a fixed end
beam with a load P applied at its mid span. This beam is discretized as two beam
elements, as shown in Figure 5.2(a). The components of element forces and

element distortions are depicted in Figure 5.2(b) and those of the entire structure
are illustrated in Figure 5.2(c).
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(@) A fixed ended beam S.
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(b) Member forces and member distortions.
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(c) Nodal forces and nodal displacements of the entire structure.
Fig. 5.2 [lllustration of the analysis of simple structure.

For each element such as element 1, the element stiffness matrix can be written as,

n kit Ko Kiz Ky | ug
rp| | Ko Koo Koz Kog | Uz

= (5-9)
3| |ksp Kz Ksz Kzg|us
] [Kar Kaz Kkazg Kag | Ug
and for the entire structure we have:
p] [Kin K Kig Ky Kis Kig vy ]|

Po| |Ko Ko Koz Kps Kos Kog | Vs
K K K K K K Vv

P3| | Kar Kaz Kgz Kzg Kzs Kgg | V3 (5-10)

Pa| |Kar Kap Kyz Kyg Kys Kyg | Vs
Ps| |Ksy Kgp Ksz Kgg Kgs Kgg || Vg
1Ps| [Ker Kgz Kgz Kgg Kgs Kegg || Ve

Element stiffness matrices k; and k;, can be easily constructed using the definition
of k. For a beam element, ignoring its axial deformation, these terms are shown in
Figure 5.3. The structure has a uniform cross section and since both elements have
the same length:

126



CHAPTER 5 Matrix Displacement Method 127

ko1

Fig. 5.3 The stiffness coefficients of a beam element ignoring its axial
deformation.
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ki =k

The unassembled stiffness matrix is an 8x8 matrix of the form k:

L
“lo k| (5-12)

Now consider the equilibrium of the joints of the structure, resulting in,

Pi=r, P2=T2, Ps=TI5+13,
Pa=Trs+Te , Ps=Tr7 , Pe=Tg. (5-13)

or in a matrix form we have,
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_rl_
_pl_ _]_ e e ry
P2 <1 - - 0 r3
p3 B 1T -1 - - . Iy
Pa a 1 -1 Ig
Ps N I
_pe_ I 1_ r7

L8]

and more compactly:

p = Br.
Consider now the compatibility of displacements as:
Up=Vvy, U=V, U3=Us=Vs
Us=Us=Vyq , Ur=Vs , Ug=Vg,

and in a matrix form we have,

ug 1

U, 1 e e e _Vl_
us o1 - . Vo
Ug e V3
Us .. 1 - - vy !
Ug N
us <o 1 g

lug | |- - - - - 1
and in compact form:
u=Ev=Bv.
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129

The reason for matrix E being the transpose of the matrix B, has already been
discussed in the previous chapter, however, using the principle of virtual work, a

simple proof can be obtained. Consider:

W = work done by external loads = % vtp

U = strain energy = %utr

Equating W and U leads to E = B' and completes the proof.

Therefore the stiffness matrix of the entire structure can be obtained as:

[6/L2 —3/L —6/L2 —3/L 0 0
-3/lL 2 3/L 1 0 0
K_2El-6/L> 3L 12712 0 -6/LP -3/L|
L|-3/L 1 0 4 3/L 1
0 0 -6/L° 3/L 6/L> 3L
| o 0 -3/L 1 3/L 2|

Applying the boundary conditions,
V1= V= V5= V=0,

leads to the formation of the following reduced stiffness matrix:

{ps}:@ 12/12 O{Va}
P4 L 0 4 Vg

pl®  —PL®
24El  24El°

Since p;=0and py=-P, therefore vj3 =

(5-19)

(5-20)

From this simple example, it can be seen that matrix B is a very sparse boolean
matrix and the direct formation of BKB' using matrix multiplication requires a
considerable amount of storage. In the following, it is shown that one can form

BKB' with an assembling process (known also as planting), as follows:
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Consider an element "a" of a structure, as shown in Figure 5.4, for which the
element stiffness matrix can be written as,

K, =| i K (5-21)
fokgi kg

i and j are the two end nodes of member a. Multiplication BKB" has the following
effectonk, :

00 00
00 00
00 00
I o[kjj kij}{000|0000_|0_0 kjj 0 kjj 00
0 ojkji kjjjo oo o001 00 |00]0 kjj 0 kj; 00
0 I 0 1
00 00
0 0 0 o

(5-22)
10 00 0 0 0 0 0
2000 0 0 0 00
30 00 0 0 0 00 g 6
40 00 kij 0 kj 00 a
50 00 0 0 0 00 , 5 o
60 0 0 kjj 0 kjj 0 0
7000 0 0 0 00
8000 0 0 0 0 0 8| 12 !

Fig. 5.4 A structural model S.

The adjacency matrix of S is also an 8x8 matrix and the effect of node 4 being
adjacent to node 6, is the existence of unit entries in the same locations as the
submatrices of the element a. One can build up the adjacency matrix of a graph by
the addition of the effect of one member at a time. In the same way, one can also
form the overall stiffness matrix of the structure by the addition of the contribution
of every member in succession. As an example, for the graph shown in Figure 5.4,
the overall stiffness matrix has the following pattern:
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12345678

* . ok

* . . ok ok ok . . (5-23)

* . * . k%

* k%

O N o OB W N
*
*
*
*
*

Non-zero entries are shown by *. For a stiffness matrix each of these non-zero
entries is an axa submatrix, where a is the degrees of freedom of each node of the
structure. As an example, for a planar truss o = 2, and for a space frame o = 6.
The formation of the stiffness matrix by the above process is known as assembling
or planting of the stiffness matrix of a structure.

In the above example, the stiffness matrices could be assembled because both are
constructed with reference to the same coordinate system. However, for a structure
in general, the stiffness matrices should be prepared in a single coordinate system.
On the other hand, for each element, there exists a coordinate system attached to
the element, known as a local coordinate system. In Figure 5.5, local coordinate
systems for members 45 and 25, and the global coordinate system for the entire
structure are illustrated.
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Fig. 5.5 Local X,y and global coordinate x, y systems.

A global coordinate system can be selected arbitrarily; however, it may be
advantageous to select this coordinate system such that the structure falls in the
first quadrate of the plane, in order to have positive coordinates for the nodes of
the structure. On the other hand, a local coordinate system of a member has one of
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its axes along the member, the second axis lies in its plane of symmetry (if it has
one) and the third axis is chosen such that it results in a right handed coordinate
system.

The transformation from a local coordinate to a global coordinate system can be

performed as illustrated in Figure 5.6, in which xyz is the global system and
XY2Z,, often denoted by Xyz , is the local system.

The relation between x;y,z; and xyz can be expressed as:

Xq coso. 0 sina | x
yi|=| 0 1 0 |y (5-24)
Z; —sina 0 cosa |z
y
y y1 X2 \\\\
yz \\ X
X S i
Y, ¢ Y; S 01,
~ L 1|z
AN X 1 !
Y i :
AN 5 X ! g' ! X
N\ i + >
Z 7 & \J‘\/\ : /,/
Zz //// L* \\\\ : ,” ZJi
/N ST < g
i
z X, z
(@) (b)
Fig. 5.6 Transformation from local coordinate system to global coordinate
system.
Similarly x,y,z, and x,y;z; are related by,
X5 cosp  sinf 0| x;
Yo |=|-sinB cosp Ofy; (5-25)
Zy 0 0 1 Zq
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X3 1 0 0 X9
and y3|=|0 cosy siny|y,]|. (5-26)
Z3 0 -—siny cosy| z,

Combining the above transformations results in,

(cosacosp) (sinB) (cospsina)
T=|-(sinasiny+cosasinfcosy) (cosfcosy) (sinycosa —sinasinfcosy) |
—(sina.cosy—cosasinfsiny) (—cosBsiny) (cosocosy+sinasinBsiny)

(5-27)
where:

X3 X

ys [=[T] v} (5-28)

23 z

A vector in a local coordinate system T and in a global coordinate system I are
related by:

r=Tr. (5-29)
It can easily be proved that T is an orthogonal matrix, i.e.
[T]*=[T]" (5-30)

In the above transformation, y represents the tilt of the member which is quite
often zero. Thus T can be simplified as:

cosacosp  sinf  sina.cosp
T=|-cosasinf cosp -—sinasinf | (5-31)
—sina 0 cosa

This matrix can easily be written in terms of the coordinates of the two ends of a
vector. Considering Figure 5.6(b), Eq. (5-31) becomes,

in/L y”/L Zji/L

T= —inyji/L*L L*/L yjizji/L*L' (5-32)
_Zji/L* 0 in/L*
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where:

Xji=Xi=Xi  Vi=V¥iYi  Zi=ZZ

1 1
L*:(zJZi +xj2i)2 and L:(zjzi +yj2i +szi)2. (5-33)

Notice that T transforms a 3-dimensional vector from a global to a local
coordinate system and T' performs the reverse transformation. However, if the
element forces or element displacements (distortions) consist of p vectors, the
block diagonal matrix with p submatrices should be used. As an example, for a
beam element of a space frame, with each node having 6 degrees of freedom, the
transformation matrix is a 12x12 matrix of the form:

T-= (5-34)

5.3 ELEMENT STIFFNESS MATRICES

Element stiffness matrices for skeletal structures can be obtained using various
methods. For some elements, concepts from mechanics of solids are sufficient for
the formation of an element stiffness matrix; for others, energy methods are more
suitable. In the following, a general method for the formation of a stiffness matrix
is presented and then applied to bar and beam elements. The details of the
derivations are omitted for brevity. Such details can be found in any classical book
on the matrix analysis of structures.

5.3.1 STIFFNESS MATRIX OF A GENERAL ELEMENT

Consider an elastic body as shown in Figure 5.7. Suppose that some loads are
applied at certain points (specified as nodes) 1,2,...,n. Let v; be the displacement
of node i along the applied load pi. The loads are applied in a pseudo-static
manner, increasing gradually from zero. Assuming a linear behaviour, the work
done by an external force p = {p1, p2, ... , Pn) through the displacement v = {v;, v,,
..., Vn} can be written as:

1
W:E(p1v1+p2v2 +..+PnVp)- (5-35)
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According to the principle of the conservation of energy,

W=U, (5-36)
and therefore: U= % (P1ve +P2Vo + ...+ P Vy) - (5-37)

Now if a small variation is given to v; while keeping the other displacement
components constant, then the variation of v with respect to v; can be written as:

oU 1 apl op2 P
Vi+—5Vy +..+—1Lv ;
E >[pi + v, 1y V2 v, nl (5-38)
According to Castigliano’s theorem:
Y Pi 5-39
ov; I (5-39)
Thus,
0
m~—P£lv + p2V2+ p”an (5-40)
i avi
or in a matrix form for all i=1,...,n we have:
(o] o1 P2 . Pn i
ovy  ovi ovy
P2 %1 G2 . O || V2
ov ov ov .
S R (5-41)
@ o
Pn] |av, v, v |LYn

According to the definition, the above coefficient matrix forms the stiffness matrix
of the elastic body defined by its n nodes as illustrated in Figure 5.7.

A typical element of the stiffness matrix k;; is given by:

P;

kij = 6Vi .

(5-42)
Using Castigliano’s first theorem:

o U, 82U
kij=——()= :
avj vy’ vy,

(5-43)
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P,v,

Ps,Va

Fig. 5.7 An elastic body, its nodal forces and nodal displacements.

Similarly:
op;  o°U
ki = 2P0 _ . -
ij v vy, (5-44)
Since the order of differentiation should not affect the result, we have,
kij = kji y (5-45)

which is proof of the symmetry of the stiffness matrices, both for a structure and
for an element.

A symmetric matrix S is called positive definite, if x'Sx > 0 for every non-zero
vector x. The stiffness matrix K of a structure is positive definite since,

pv = (Kv)'v = vK'v = v'Kv = 2W,

and W is always positive.

5.3.2 STIFFNESS MATRIX OF A BAR ELEMENT

Consider a prismatic bar element as shown in its local coordinate system, Figure
5.8. According to the definition of such an element, only axial forces are present.

The strain energy of this bar can be calculated as:
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U= %H OyxExxdXdydz = %I.U g2, dxdydz = %I g2, dx

On the other hand:

. ou
€xx = Strain :6_X'
X

Ll

NI

Fig. 5.8 A bar element in its local coordinate system.

Since the strain is constant along the bar, u, can be expressed as:
Uy = AiX+A,.

From the boundary conditions:
Uy =Ujatx=0

Uy =U4atX=L.

Hence: A= u4—|:ul and A, =Tj.

By substitution in Eq. (5-48), we have,

137

(5-46)

(5-47)

(5-48)

(5-49)

(5-50)

(5-51)
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and from Eqg. (5-46) the strain energy of the bar can be calculated as:

EA

U = ——[U% - 20,0, +TL]. (5-52)
2L
Hence:

— 52U EA - - a%u EA
Kjg=——=——, Kyg=Kgq = = 5-53
11 a2 L 1=K = o0 o, 3 (5-53)
- 2°U EA -

Kas =—= and kj; =0 for all other components.

auy L

Therefore, the stiffness matrix of a bar element in the selected local coordinate
system is obtained, and

n 1 0 0]-1 0 0fuy
2} 0 0 0|0 O Ofmy
T EA| 0 O 0|0 O Ofu
3==2 3 (5-54)
[ L|-1 0 0|1 0 0fuy
[ 0 0 0|0 O Ofus
175 | 10 0 0|0 O 0]TUg]|
From Eg. (5-29), we have:
r=Tr (5-55)
and
u=Tu (5-56)

From the definition of an element stiffness matrix in a local coordinate system:
r=ku. (5-57)
By substitution of Egs (5-55) and (5-56) in the above equation:

r = T KTu = T'KTu. (5-58)
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By definition of a stiffness matrix in a global coordinate system:

r =ku. (5-59)
Comparison of Eg. (5-58) and Eq. (5-59) results in:

k = T'KT. (5-60)

Hence the stiffness matrix of a bar element in a global system, as shown in Figure
5.9, can be written as:

<

Fig. 5.9 A bar element of a space truss.

Denoting T in Eq. (5-32) by,

Ty T T3
T=Ty Ty Tyl (5-61)
Tar T Ts3

k can be written as:
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T3
2
Ti1Too T2 sym.
2
EA| TuTiz TioTis Ti3

k=— 2 ’ (5-62)
LI -T3 -TyuTp -TuTis Th
2 2
=TTy -T =TT Tl TH
2 2
|~ TuiTis —TTiz =Tz TyTiz TpTiz Tiz)

The entries of the above matrix can be found using T; from Eqg. (5.32). As an
example, the stiffness matrix of bar 1 in the planar truss shown in Figure 5.10, can
be obtained as:

Ty = avi T =%=£,
R AR

Ty = Ya1 l:_%:_g
(xfo + i +28)?

L2

Fig. 5.10 A planar truss and the selected global coordinate system.

Therefore:

0.5 —0.5‘—0.5 0.5

_EA[-05 05| 05 -05
LT L21-05 05 ‘ 05 -05]
05 -05[-05 05

5.3.3 STIFFNESS MATRIX OF A BEAM ELEMENT

Consider a prismatic beam element as shown in Figure 5.11. The element forces
and the element distortions, are defined by the following vectors:
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= t
r :{l’l, fo,I3,..., I'lz} s

and

- t
u={uy,Up,Uz,.... Upp},

where r; — r are the force components at end i and r, — rg are moment components
at end i. Also r; — rg are the force and ryy — ry, are the moment components,
respectively at the end j, and u; (i=1,...,12) are correspondingly the translations and
rotations at the ends i and j of the element.

y
A

Nl

Fig. 5.11 A beam element in the local coordinate.

Using energy methods, the stiffness matrix of the beam element in the local
coordinate system defined in Figure 5.11 can be obtained as:

[ A 0 0 0 0 0o -A o0 0 0 0 o |
2 2
0 121, /L 0 0 0 6l,/L 0 0 -12,/L 0 0 6l, /L
2 2
0 0 121y /1 0 ~8ly /L0 0 0 -2y /1 0 -6l /L0
0 0 0 120+ v) 0 0 0 0 0 ~J2a+v) 0 0
0 0 ~6ly /L 0 ay 0 0 0 ~6ly /L 0 2y 0
_ E| 0 el,/L 0 0 0 4, 0 -6, /L 0 0 0 21,
k:I -A 0 0 0 0 0 A 0 0 0 0 0
2 2
0 121, /L 0 0 0 -6l /L 0 120 /L 0 0 0 -6l /L
2 2
0 0 —121 /L 0 6y /L 0 0 0 121y /1 0 6ly /L 0
0 0 0 —ir2a+v) 0 0 0 0 0 120+ v) 0 0
0 0 -6ly /L 0 2, 0 0 0 6y /L 0 a1y 0
Lo e/t 0 0 0 2, 0 -6l /L 0 0 0 a, |
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In which Iy, I, and J are the moments of inertia with respect to they and z axes

and J is the polar moment of inertia of the section. E specifies the elastic modulus
and v is the Poisson ratio. The length of the beam is denoted by L.

For the two-dimensional case the columns and rows corresponding to the third
dimension can easily be deleted, to obtain the stiffness matrix of an element of a
planar frame.

The stiffness matrix in a global coordinate system can be written as:

Yol

k=| T K T | (5-64)

For the two-dimensional case,

k:{T TT[K]{T T}. (5-65)

The entries of k are as follows,
2 2 .z
k1 =Tii00 + Ty10
Koq = Ty Tio0ty + Tog Tonall Koy = THoq + T2ak
21 = l11l120g + 12112204 22 = l1207 + 12204
Z Z Z
k3y =Tpia5, k3 =Tooa) k33 =03

2 2 .z z Z
kKgy =-T{100 + To104, Kap = —To1Top0g — TipTyg0, Kag = -Tp105,

Kag = -Tp05 (5-66)
Keg = —To1Topal —TioTyqoy Koy = -T20% —THay  Kea = —Toab
51 21122Y%4 12 1111 52 21%4 1291 53 2242

ke, =T, T, o2 +T.T.o kg5 =Tal +THay

547 "21'22%4 T 120%™

z z z Z z z
Kep =To102, Kgp = Tpoap  Kgg =0, Kgg =—Tp105, Kgs = —Tp05, Keg =03.
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in which:
al_&, aé:GEIZ, a§:4EIZ, aizleIZ,and aé=2EIZ.
L L2 L 2 L

As an example, consider the planar frame, shown in Figure 5.12, with
A= 4x10‘3m2, I=30x10°m* and E = 2x10™N/m? . For element 1 we have,

T11:O

T12:1

T21:—1

and the stiffness matrix of the element is obtained as,

Kk, =10°

[ 1.25
0
-0.75

200
0

6

T» =0,

sym.

-1.25
0

-0.75

0
—-200
0

0.75
0
3

1.25
0
0.75

200
0

6

where "sym." denotes the symmetry of the matrix.

y
Zf @ sg
@

1

- -

4m

am

Fig. 5.12 A planar frame.

5.4 OVERALL STIFFNESS MATRIX OF A STRUCTURE

Once the stiffness matrix of an element is obtained in the selected global
coordinate system, it can be planted in the specified and initialised overall stiffness
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matrix of the structure K, using the process described in Section 5.2. This is
illustrated by the following simple example:

Let S be a planar truss with an arbitrary nodal and element numbering, as shown
in Figure 5.13. The entries of the transformation matrices of the members are
calculated using Eq. (5-32) and Eq. (5-33) as follows:

Forbar1l: Ty = X2 =X :ﬂ:l and Ty, :uzﬁzﬁ_
2 2 2 2 2 2
Similarly for bar 2: T11=% lez—g, and forbar 3 Ty =1, T1,=0.
30kN
20kN ¢

2 ® ﬁT
1@ @ 3m

e N

im im im

Fig. 5.13 A planar truss and the selected global coordinate system.

Now the stiffness matrices can be formed using Eq. (5-62) as:

0.25 sym.
For bar 1. .. _EA| 0433 075
orbar & 1772 | —025 0433 025
-0433 -0.75 0.433 0.75
0.25 sym.
EA|-0.433 0.75
For bar 2: k) =—

2 | -025 0433 025
0.433 -0.75 -0.433 0.75
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1 sym.
EA| 0O O
: ky=—
For bar 3 35511 0 1
0 00 O

The overall stiffness matrix of the structure is an 8x8 matrix, which can easily be
formed by planting the three member stiffness matrices as follows:

[ 025 0433 -025 -0433 O 0O 0 0
0433 075 -0433 —-075 0 0O 0 0
~025 -0433 15 0 -025 0433 -1 0
«_EA|-0433 -075 0 15 0433 -075 0 0
2 0 0 -025 0433 025 -0433 0 0
0 0 -0433 -075 -0433 075 0 0
0 0 -1 0 0 0 10
| o 0 0 0 0 o 0 1]

Partitioning K into 2x2 submatrices, it can easily be seen that it is pattern
equivalent to the node adjacency matrix of the graph model of the structure as
follows:

D*=

This pattern equivalence simplifies certain problems in structural mechanics, such
as ordering the variables for bandwidth or profile reduction, methods for
increasing the sparsity using special cutset bases, and improving the conditioning
of structural matrices, which will be discussed in Chapters 7 and 8.

The matrix K is singular, since the boundary conditions have to be applied.
Consider,

p=Kv

and partition it for free and constraint degrees of freedom as:
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K K v
Pc Ko Koo | Ve
This equation has a mixed nature; p; and v, have known values and p. and v; are

unknowns. K is known as the reduced stiffness matrix of the structure, which is
non-singular for a rigid structure.

For boundary conditions such as v, = 0, it is easy to delete the corresponding rows
and columns to obtain,

pr = K¢ vs, (5-68)

from which v; can be obtained by solution of the above set of equations. In a
computer this can be done by multiplying the diagonal entries of K. by a big
number such as 10%. An alternative approach is possible by equating the diagonal
entries of K to unity and all the other entries of these rows and columns to zero.
If v, contains some specified values, p. will have corresponding v, values. A third
method, which is useful when a structure has more constraint degrees of freedom
(such as many supports), consists of the formation of element stiffness matrices
considering the corresponding constraints, i.e. to form the reduced stiffness
matrices of the elements in place of their complete matrices. This leads to some
reduction in storage, also at the expense of additional computational effort.

As an example, the reduced stiffness matrix of the structure shown in Figure 5.13
can be obtained from K, by deleting the rows and columns corresponding to the

three supports 1, 3 and 4.
20] EA[L5 0 ux
30] 2|0 15]uy |

The solution results in the joint displacements as:

Uy, =——— and u —ﬂ
271 B5EA Y T EA”

The member distortions can easily be extracted from the displacement vector, and
multiplication by the stiffness matrix of each member results in its member forces
in the global coordinate system. As an example, for member 3 we have:
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Fax 1 40/1.5EAT [ 13.33
fy| EA| 0 0 sym. 40/EA 0
| 2 -1 0 1 0o | |-1333|
Fay 00 0 0 0 0

A transformation yields the member forces in the local coordinate
systems, r; = {-23.99 23.99}', r, ={-10.659 10.65}" and r; ={13.33 —13.33}'.

Example: The truss shown in Figure 5.14 has members each of the same cross
sectional area of 15000mm?, and elastic modulus 210 kN/mm?. Vertical loads of
10kN and 5kN are applied at node 3 and node 5, respectively. Determine the
forces in all members:

‘ m 2m SkN

Fig. 5.14 A planar truss S.

The force-displacement relationship for a planar bar member is obtained from Eq.
(5-23) as follows:

X 2 2 X
Fly T Tl | T —TaTe ”5;
2 2 | s
R |_EA| TuTp, To | -TuTe  -TH |0 (5-69)
| L| -T4 T, T4 TyuT, JSX
j -Th —TuTp i1 1Tz || ]
2 2
Fi “TuTe -T2 | TuT, T {5}/

The stiffness matrices for the members of S are determined as:

For members 1 and 2:
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1575.0 0 -1575.0 O 1575.0 0 -1575.0 O
0 0 0 0 0 0 0 0
15750 0 -1575.0 0| [15750 0 -1575.0 0
0 0 0 0 0 0 0 0

For members 3 and 4:

[ 121071 530.02 -1210.71 -530.02

530.02 232.03 -530.02 -232.03
-1210.71 -530.02 1210.71  530.02
| -530.02 -232.03 530.02 232.03

[ 672.08 -588.18 -672.08 588.18
—588.18 51476 588.18 -514.76
—-672.08 588.18 762.08 —588.18

| 588.18 -514.76 -588.18 514.76

For members 5 and 6:

0 0 0 0 1210.71 -530.02 -1210.71 530.02
0 3600.0 0 -3600.0 -530.02 232.08  530.02 -232.03
0 0 0 0 "1 -1210.71 53002 1210.71 -530.02
0 -3600.0 0 3600.0 530.02 -232.03 -530.02 232.03

For member 7:

1210.71 -530.02 -1210.71 530.02
—-530.02 232.03  530.02 —232.03

—-1210.71 530.02  1210.71 -530.02
530.02 -232.03 -530.02 232.03

Assembling the stiffness matrix of the entire structure and imposing the boundary
conditions 8§ =8 =8} =8} =0 results in:
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(0] [363213 Ts%]
0 | |-53002 4296.09 sym. 5
0 0 0 3822.08 8

~10|7| 0  -36000 -588.18 4114.76 5
0 | |-121071 53002 -15750 0 278571 5%

5| | 53002 -23208 0 0 53002 232.03s)

The solution of the above equations results in the joint displacements:

85 = 4.716814x1072, 8 = -2.12241x1072, 8% =-1.09894x1072,
8y = -2.25665x107% 8% = -1.824108x102 and &Y = -9.521007x1072.

Once the displacements are calculated, the member forces can easily be obtained
using member stiffness matrices.

5.5 GENERAL LOADING

The joint load vector of a structure can be computed in two parts. The first part
comes from the external concentrated loads and/or moments, which are applied at
the joints defined as the nodes of S. The components of such loads are most easily
specified in a global coordinate system and can be entered to the joint load vector

|\ B

The second part comes from the loads which are applied on members. These loads
are usually defined in the local coordinate system of a member. For each member
the fixed end actions (FEA) can be calculated using the existing classical formulae
or tables. A simple computer program can be prepared for this purpose. The fixed
end actions should then be rotated to the global coordinate system using the
transformation matrix given by Eq. (5-27). The FEA should then be reversed and
applied to the end nodes of the members. These components can be added to p to
form the final joint load vector. After p has been prepared and the boundary
conditions imposed, the corresponding equations should be solved to obtain the
joint displacements of the structure. Member distortions can be extracted for each
member in the reverse order to that used in assembling p vector.

Example: A portal frame is considered as shown in Figure 5. 15. The members
are all made of sections with area A = 150cm?, moment of inertia 1, = 2x10%m?*
and elastic modulus E = 2x10°kN/cm? Calculate the joint rotations and
displacements.
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50kN

12kN/m

HUHHHT

5m |

Fig. 5.15 A portal frame and its loading.

The equivalent joint loads are illustrated in Figure 5.16:

1600kN.m

I

74kN

ya

X
——

Fig. 5.16 Equivalent joint loads.

Employing Eqg. (5-66), the stiffness matrices for the members are obtained as
follows:

For member 1:

[0.008
0 0.75 sym.
K _10% -15 0 400 ’
0.008 0 1.5 0.008
0 -075 0 0 075
| -15 0 200 15 0 400]

and for member 2:
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[ 0.6 i
0 0.004 sym.
4 O 0.96 320
k, =10
-0.6 0 0 0.6
0 -0.004 -0.96 0.004
| O 0.96 160 -0.96 320 |
For member 3:
[ 0.008 )
0 0.75 sym.
4 15 0 400
k3 =10
—0.008 0 -15 0.008
0 -075 0 0 0.75
15 0 200 -15 0 400]

Assembling the stiffness matrices and imposing the boundary conditions results in
the following equations:

[7.4] [0.608 83
0 0 0.754 sym. &)
160 10t 1.5 096 720 03
0 -06 0 0 0.608 5%
0 0 -0004 -09 0 0.754 5y
| 0 0 096 160 15 -0.96 720 o2

Solving these equations leads to:

5% =0.0659167, 8% = 2.617764E-04, 63 = —8.983453E-05,

83 = 0.06533767, 83 = —2.617704E-04 and 03 = — 1.16855E-04.

5.6 COMPUTATIONAL ASPECTS OF THE MATRIX
DISPLACEMENT METHOD

The main advantage of the displacement method is its simplicity for computer
programming. This is due to the existence of a simple kinematical basis formed on
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a special cutset basis known as cocycle basis of the graph model S of the structure.
Such a basis does not correspond to the most sparse stiffness matrix, however, the
sparsity is good enough, not to look for a better basis in more usual cases.
However, if an optimal cutset basis of S is needed, then the displacement method
has all the problems encountered in the force method, described in Chapter 6. The
algorithm for the displacement method is summarized in the following. The
coding for such an algorithm may be found in textbooks such as those of
Vanderbilt [242] and Meek [173].
Algorithm
Step 1: Select a global coordinate system and number the nodes and members of
the structure. An appropriate nodal ordering algorithm will be discussed in
Chapter 7.
Step 2: After initialisation of all the vectors and matrices, read the data for the
structure and its members. For multi-member regular structures, data can be
generated using the method of Chapter 10.
Step 3: For each member of the structure:

(a) compute L, L*, sina,, sinf,siny, cosa., CoSP, Cosy;

(b) compute the rotation matrix T;

(c) form the member stiffness matrix k in its local coordinate system:;

(d) form the member stiffness matrix k in the selected global coordinate
system;

(e) plant k in the overall stiffness matrix K of the structure.
Step 4: For each loaded member:
(a) read the fixed end actions;

(b) transform the fixed end actions to the global coordinate system and
reverse it to apply at joints;

(c) store these joint loads in the specified overall joint load vector.
Step 5: For each loaded joint:

(a) read the joint number and the applied joint loads;
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(b) store it in the overall joint load vector.

Step 6:  Apply boundary conditions to the structural stiffness matrix K, to obtain
the reduced stiffness matrix Ks. Repeat the same for the overall joint load vector.

Step 7:  Solve the corresponding equations to obtain the joint displacements.
Step 8: For each member:
(a) extract the member distortions from the joint displacements;
(b) rotate the member distortions to the local coordinate system;
(c) compute the member stiffness matrix;
(d) compute the member forces and fixed end actions.
Step 9: Compute the final member forces.
For an efficient displacement analysis of a structure, special considerations must

be taken into account, which will be discussed in Chapters 7, 8 and 10 of this
book.
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