
CHAPTER 3 

Rigidity of 

Skeletal Structures 

 

3.1   INTRODUCTION 

The rigidity of structures has been studied by pioneering structural engineers such 
as Henneberg [79] and Müller-Breslau [176]. The methods they developed for 
examining the rigidity of skeletal structures are useful for the study of structures 
either with a small number of joints and members, or possessing special 
connectivity properties. Rigid-jointed structures (frames), when supported in an 
appropriate form and containing no releases, are always rigid. Therefore only truss 
structures require to be studied for rigidity. 

Various types of methods have been employed for the study of rigidity; however, 
the main approaches are either algebraic or combinatoric. A comprehensive 
discussion of algebraic methods may be found in the work of Pellegrino and 
Calladine [190]. The first combinatorial approach to the study of rigidity is due to 
Laman [150] who found the necessary and sufficient conditions for a graph to be 
rigid, when its members and nodes correspond to rigid rods (bars) and rotatable 
pin-joints of a planar truss. Certain types of planar truss have been studied for 
rigidity by Bolker and Crapo [15], Roth and Whiteley [211] and Crapo [33]. 

Although Laman theoretically solved the problem of rigidity for planar trusses, no 
algorithm was given to check whether a given graph was rigid. Two combinatorial 
algorithms are developed by Lovász and Yemini [165] and Sugihara [227], the 
inter-relation of which has been shown by Tay [231]. Some studies have recently 
been made in the direction of extending the developed concepts for planar trusses 
to those of space trusses. However, the results obtained are incomplete and 
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applicable only to special classes of space truss (see Ref. [247] as an example). 
Therefore, in this chapter, only planar trusses are studied. 

 

3.2   DEFINITIONS 

Rigidity of trusses can be studied at different levels. The first level is 
combinatorial - is the graph of joints and members (bars) correct? The second 
level is geometrical - is the placement of joints appropriate? The third level is 
mechanical - are the selected materials and methods of construction suitable? This 
chapter is devoted to the first level rigidity analysis of planar trusses. For this 
purpose, simplifying assumptions and definitions are made as follows: 

Consider a planar truss composed of rigid members and pinned joints. Each joint 
connects the end nodes of two or more members in such a way that the mutual 
angles of the members can change freely if the other ends are not constrained. 
Such an assumption is adequate for the first level analysis of the rigidity. Let M(S) 
and N(S) denote the set of members and nodes of the graph model S of a truss. 
Denote the Cartesian coordinates of a node ni ∈ N(S) by (xi,yi). The number of 
members and nodes of S, as before, are also denoted by M(S) and N(S), 
respectively. 

A member connecting ni to nj constrains the movement of S in such a way that the 
distance between these two nodes remains constant, i.e. 

 .const)yy()xx( 2
ji

2
ji =−+−  (3-1) 

 Differentiating this equation with respect to time t, we get, 

 ,0)yy)(yy()xx)(xx( jijijiji =−−+−− &&&&  (3-2) 

where the dot denotes the differentiation with respect to t. Equation (3-2) implies 
that the relative velocity should be perpendicular to the member, that is, no 
member is stretched or compressed. Writing all such equations for the members of 
S, the following system of linear equations is obtained, 

 Hw = 0, (3-3) 

where H is a M(S)×2N(S) constant matrix and w is a column vector of unknown 
variables t

N(S)21N(S)21 }y ... y yx ... x x{ &&&&&&=w , t denoting the transpose. A vector w 
which satisfies Eq. (3-3), is called an infinitesimal displacement of S. The 
infinitesimal displacements of S with respect to point-wise addition and 
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multiplication by scalars, form a linear vector space R2N(S). The rigid body motion 
in a plane is a three-dimensional subspace of this linear space. The co-dimension 
of this subspace of rigid motions in the space of all infinitesimal motions is called 
the degree of freedom of S, denoted by f(S). The structure S is rigid if f(S) = 0. 

As an example, consider a truss as shown in Figure 3.1. For this truss, matrix H 
and vector w can be written as: 
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The entries of H are real and linear functions of the nodal coordinates of the 
corresponding graph. 
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Fig. 3.1   A triangular planar truss. 

It should not be thought that the rigidity of S requires Eq. (3-3) to have only the 
trivial solution w = 0. Any rigid body motion with non-trivial w will also satisfy 
this equation. As an example, consider a translation of the entire S specified by a 
vector {a,b}t, i.e. axxx kji === &&&  and byyy kji === &&& . Obviously Hw = 0 still 
holds, since the sum of the first (or second) three columns of H is zero. Therefore 
rank (H) < 2N(S). The rigid body motion subspace in plane has dimension 3, and 
for any truss we have rank (H) ≤ 2N(S) − 3. However, if rank (H) = 2N(S) − 3, 
then S is called rigid and for rank (H) < 2N(S) − 3, it is non-rigid. In the above 
example rank (H) = 2×3 − 3 = 3 holds, and therefore a triangular planar truss is 
rigid. 
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Now consider other examples as shown in Figure 3.2. The truss shown in Figure 
3.2(a) is rigid, while the one in Figure 3.2(b) is not rigid, although their underlying 
graphs are the same. The assignment of velocities, indicated by arrows, forms an 
infinitesimal displacement because it does not violate Eq. (3-3). The nodes without 
arrows are assumed to have zero velocities. Similarly, though Figure 3.2(c) and 
Figure 3.2(d) have the same graph models, (c) is rigid but (d) is not rigid. It should 
be noted that an infinitesimal displacement does not always correspond to an 
actual movement of a mechanism. The truss (b) deforms mechanically, while truss 
(d) violates only Eq. (3-3). 

 
                      (a)                        (b)                      (c)                         (d) 

Fig. 3.2   Rigid and non-rigid planar trusses. 

The nodes of a structure S are in general position if x1, y1, x2, y2, ...,xN(S), yN(S) are 
algebraically independent over the rational field. When the nodes are in general 
position, the definition of algebraic dependence shows that a subdeterminant of 
matrix H is 0, if and only if it is identically 0, when x1, y1, ... , xN(S), yN(S) are 
considered as variables. Therefore if the nodes of S are in general position, the 
linear independence of the Eq. (3-3) depends only on the underlying graph, and 
consequently the rigidity also depends only on the graph model of the structure. 
From now on it is assumed that the nodes of S are in general position.  

For a ball-jointed space truss, Eq. (3-3) can be written in a general form to include 
a third dimension z. For such a case, a rigid body motion in space is a six 
dimensional subspace of R3N(S). Therefore a space truss will be rigid if rank (H) = 
3N(S) − 6 and non-rigid if rank (H) < 3N(S) − 6. 

Suppose S is the graph model of a planar truss whose joints are in general 
position. A graph S is called stiff if the corresponding truss is rigid. For any X ⊆ 
M, let ρS(X) be the rank of submatrix of H consisting of the rows associated with 
the members of X. X is called generically independent if ρS(X) = |X|, and 
generically dependent if ρS(X) < |X|.  |X| denotes the cardinality of X. 

For any subset X of M(S), define,  

 µS(X) = − M(X) + 2N(X) − 3, (3-4) 
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where |M(X)| = |X|. Then the following basic theorem on rigidity can be stated: 

Theorem 1 (Laman [150]):  The graph S is generically independent if and only if 
µS(X) ≥ 0 for any non-empty subset X of M(S). 

Corollary 1:  S is stiff if and only if there exists M′ ⊆ M(S) such that | M′ | = 
2N(S) − 3 and µS(X) ≥ 0 for every non-empty subset X of M′ . 

Corollary 2:  S is stiff and generically independent, if and only if  

(a) µS(M) = 0 and 

(b) µS(X) ≥ 0 for every non-empty subset X of M(S). 

Using γ(S) = M(S) − 2N(S) + 3 = − µS(S), Theorem 1 can be restated as follows: 

The graph S is generically independent if and only if γ(Si) ≤ 0 for every subgraph 
Si of S, Figure 3.3(a). The graph S is stiff if and only if there is a covering 
subgraph S  of S such that γ( S ) = 0 and γ(Si) ≤ 0 for every non-empty subgraph 
Si of S , Figure 3.3(b), which is a statically indeterminate structure.  

Finally, the graph S is stiff and generically independent, if and only if  

(a) γ(S) = 0  and  

(b) γ(Si) ≤ 0 for every subgraph Si of S, Figure 3.3(c), which is a statically 
 determinate truss. 

Unfortunately the application of Theorem 1 requires 2M(S) steps to determine 
whether a graph is generically independent. In the next sections, two methods are 
described for an efficient recognition of generic independence, which were 
developed by Sugihara, and Lovasz and Yemini. 

m

 

                (a) S                              (b) S = S ∪ m                          (c) 

Fig. 3.3   Generically independent, stiff, generically independent and stiff graphs. 

3.3   MATCHING FOR THE RECOGNITION 
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        OF GENERIC INDEPENDENCE 

Planar trusses are frequently used in structural engineering and therefore a method 
is presented in this section for checking the rigidity of these structures, which is 
suitable for both determinate and indeterminate trusses. The algorithm is a 
polynomial bounded one and uses complete matching of a specially constructed 
bipartite graph for the recognition of generic independence. 

Definitions:  Let B(S) = (A,E,B) be a bipartite graph with node sets A, B and 
member set  E. A subset E′ of E is called a complete matching with respect to A if 
the end nodes of members in E′ are distinct and if every node in A is an end node 
of one member in E′ .  

For X ⊆ A, let Γ(X) be the set of all those nodes in B that are connected to nodes 
in X by some members of E. As has been described in Chapter 1, a graph has 
complete matching, if and only if |X| ≤ |Γ(X)| for every X ⊆ A. Examples of 
matching and complete matching are depicted in Figures 3.4(a) and (b), 
respectively. Using these definitions, the method is described as follows: 

A B A B

 
                           (a) A matching.               (b) A complete matching. 

Fig. 3.4   Examples of matching. 

Construct a bipartite graph of S. For this purpose let S be a graph with N(S) nodes 
and M(S) members. The corresponding node set and member set are shown with 
the same symbols. For each node ni of S let pi and qi be two distinct symbols. Then 
let B(S) = (A*,E*,B*) be the bipartite graph whose node sets A* and B* and 
member set E* are defined as:  

  A* = M(S), 

  B* = {p1,q1, p2,q2, ...,pN(S), qN(S) } 

  E* = {(m,pi),(m,qi),(m,pj),(m,qj) | m = {ni,nj} ∈ M(S)}. 

This bipartite graph is now augmented as follows: 
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Let t1, t2 and t3 be three distinct symbols. Then for any 1≤ i < j ≤ N(S), let Bij(S) = 
(A*,Eij,B*) be the new bipartite graph constructed from B(S) by the addition of 
three nodes and three members in the following manner: 

  ∗
cA  = A* ∪ {t1,t2,t3}, 

  Eij = E* ∪{(t1,pi),(t2,qi),(t3,pj)}. 

For any Z ⊆ ∗
cA , denote by Γij(Z) the set of nodes of B* which are connected to 

elements of Z by members in Eij. For any X ⊆ ∗
cA , note that 2N(X) = |Γij(X)|. Then 

the following theorem can be proven.    

Theorem 2 (Sugihara [227]):  The graph model S, is generically independent, if 
and only if for any i and j (1 ≤ i < j ≤ N(S)), Bij(S) = ( ∗

cA , Eij, B*) has a complete 

matching with respect to ∗
cA . 

Proof: Suppose S is generically independent. Let X ⊆ M(S) and Y ⊆ {t1,t2,t3}), 
and consider Z = X ∪ Y to be any subset of ∗

cA . If X = ∅, then Γij(Z) = |Γij(Y) | = 
|Y| = |Z|. If X ≠ ∅, then:  

 Γij(Z)| ≥ 2|N(X)| ≥ |X| + 3 ≥ |Z|, (3-5) 

where the first inequality follows from the definition of Bij(S) and the second from 
Laman´s theorem. Then in every case, |Γij(Z)| ≥ |Z| and hence Bij(S) has a complete 
matching with respect to ∗

cA . 

Now suppose for 1≤ i < j ≤ N(S), Bij(S) has a complete matching with respect to 
∗
cA . In this case |Z| ≤ |Γij(Z)| is satisfied for Z ⊆ ∗

cA . Let X be any non-empty 
subset of M(S). Then N(X) contains at least two nodes, like nk and nl (1≤ k ≤ 
N(S)). Because Bkl(S) has a complete matching, we have: 

 |X ∪ {t1,t2,t3}| ≤ |Γkl
 (X ∪ {t1,t2,t3})| . (3-6) 

Since Γkl(X ∪ { t1,t2,t3}) = Γkl(X), it follows that:  

 2|N(X)| = |Γkl(X)| ≥ |X ∪ {t1,t2,t3}| = |X| + 3. (3-7) 

By Theorem 1 it is concluded that S is generically independent. 
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A complete matching of Bij(S) = ( ∗
cA , Eij, B*) can be found by Hopcroft and 

Karp´s algorithm [80]. The number of Bij(S)s is proportional to M(S)×M(S).  

As an example, consider the graph S as shown in Figure 3.5(a). The bipartite 
graph of S is depicted in Figure 3.5(b) and a typical complete matching B23(S) is 
illustrated in bold lines. The examination of all Bij(S) for 1≤ i < j ≤ 4 shows that 
complete matching exists and S is a generically independent graph. 
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(a) S.                                        (b) B23(S). 

Fig. 3.5   A complete matching B23(S) of a graph S. 

The above method is quite general and it is applicable to statically determinate and 
indeterminate structures. Another approach for the recognition of determinate 
trusses is due to Lovász and Yemini [165], which is described in the following 
section. 

 

3.4   A DECOMPOSITION APPROACH FOR THE  

        RECOGNITION OF GENERIC INDEPENDENCE 

A graph S is generically independent if doubling any member of S results in a new 
graph, which is the union of two spanning forests. A spanning forest is the union 
of k trees containing all the nodes of S. This is the result of a special case of the 
following theorem: 

Theorem 3 (Nash Williams [179]):  A graph S has a k member-disjoint spanning 
forest, if and only if M(Si) ≤ k[N(Si) − 1] for every partition of N(S). 

Consider k = 2, then M(Si) ≤ 2N(Si) − 2 for every Si ⊆ S. If a member is added to 
Si without increasing its nodes iS′ = Si ∪ m, then M( iS′ ) − 2N( iS′ ) + 3 ≤ 0, i.e.  
µ( iS′ ) ≥ 0 for every Si ⊆ S. This verifies the above method for checking the 
generic independence of S. 
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As an example, the above method is applied to check the graph shown in Figure 
3.6(a) for generic independence. It can be seen that doubling any member of S 
leads to a graph which can be decomposed into two forests. The members for one 
of these forests, which have become spanning trees, are shown in bold lines in 
Figure 3.6(b). 

 

(a) A graph S. 

 
(b) Decomposition of S ∪ mi. 

Fig. 3.6   The generic independence check of S. 

The above two seemingly different methods are mathematically inter-related. A 
proof of this fact can be found in Ref. [231]. 

There is an algorithm for controlling whether a given graph is the union of two 
member-disjoint forests, which is a polynomial algorithm, Clausen and Hansen 
[28]. For definition of a polynomial algorithm, consider a problem of size n, where 
n in a graph-theoretical problem can be taken as the number of members or 
number of nodes of a graph. An algorithm is of order nk, denoted by O(nk) for 
some constant k, if its worst-case running time (or the number of operations) is 
equal to Cnk, where C is a fixed constant (changes from one algorithm to another). 
All such algorithms are known as polynomial algorithms, which are considered to 
be efficient (tractable). 

There are problems for which it is proven that no polynomial algorithms can be 
designed. These problems are called NP-hard, considered as inefficient 
(intractable) algorithms. The third important class of problems consists of those 
for which no polynomial algorithms have yet been discovered, but it is not proven 
that no such algorithm exists for any of them. These problems are known as NP-
complete problems, and have the property that if a polynomial algorithm can be 
found for any of them, then all the others will have polynomial algorithms. There 
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are many NP-complete problems and it could be astounding if polynomial 
algorithms could be found for all of them. 

 
 
3.5   RIGIDITY OF PLANAR TRUSSES: SPECIAL METHODS 

3.5.1   SIMPLE TRUSSES  

A special type of statically determinate trusses are known as simple trusses, 
defined earlier in Section 2.3.2. This type of truss is reconsidered from the point of 
view of rigidity. A simple truss can be constructed as follows: 

Start with a rigid unit such as ground or a triangle, and in each step of expansion 
add a star of degree 2 connected to the previously expanded part at its two free 
nodes. If the three nodes of the added star are not collinear, then the constructed 
truss is rigid and statically determinate. As an example, a simple planar truss is 
formed in 5 steps as depicted in Figure 3.7. 
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         S1        S2 = S1 ∪ S2      S3 =S2 ∪ S3          S4 =S3 ∪ S4          S5 = S4 ∪ S5=S 

Fig. 3.7   An expansion process for the formation of a simple truss. 

A constructive proof can be obtained by considering S, joint by joint, in the 
reverse order of the expansion; i.e. 7, 6, 5 and 4. At each step two independent 
equilibrium equations with two unknowns, having unique bar forces, can be 
obtained, which provides the determinacy and rigidity of the whole structure. 
Mathematically, using graph theory, the following proof is obtained: 

For the subgraphs used in the process of expansion we have: 

γ(S1) = 0 ,   γ(Si) = − 1    for   i=2,...,5, 

and                       γ (Ai) = 0 −  2×2+ 3= − 1   for   i=2,...,5. 

Therefore, using the intersection theorem (Eq. (2-9)), we have: 

γ(S) = 0+4(− 1) − 4(− 1) = 0. 
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However, one should show that S is also rigid. For this purpose the following 
theorem can be employed: 

Theorem 4 (Lovász and Yemini [165]):  A graph G is stiff, if and only if 

 3)G(N2]3)G(N2[
k

1i
i −≥−∑

=
, (3-8) 

holds for every set of subgraphs Gi (i=1,...,k) such that G1 ∪ G2 ∪ ... ∪ Gk = G. 

It is easy to note that it would be sufficient to consider {G1, G2, ... , Gk} which 
consist of member-disjoint spanning subgraphs. Obviously when a graph is stiff, 
the corresponding truss will be rigid. 

Example:  Consider S1 and S2 as shown in Figures 3.8(a-b), the union of which is 
S2, Figure 3.8(c). Various decompositions of S2 are shown in Figures 3.8(d-f). In 
order not to mix these subgraphs with the original ones, Gi is employed for 
denoting the decomposed subgraphs. 

 

       (a) S1    (b) S2         (c) S2   (d) G1=S1,G2,G3    (e) G1=S1, G2=S2   (f) G1,G2,G3 
Fig. 3.8   Rigidity control of a simple truss. 

For (d), Eq. (3-8) becomes: 

                                     (3) + (1) + (1) ≥ 2×4 − 3   which is true. 

For (e) we have,           (3) + (3) ≥ 5                       true, 

and for (f),                    (3) + (1) + (1) + (1) ≥ 5     which is also true. 

For any other decomposition, the inequality (3-8) holds, and therefore S2 is rigid. 
Similar arguments can be made for S3, S4 and S5 = S of Figure 3.8 verifying the 
rigidity of a simple truss.  

3.5.2   TRUSSES IN THE FORM OF 2-TREES   

These trusses are a special case of simple trusses in that a star of degree 2 is joined 
to the end nodes of an expanded member. In Figure 3.7, up to S3, this restriction is 
taken into account, i.e. S3 is a 2-tree, however, S4 and S5 are not. Therefore, a 2-
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tree is always rigid and statically determinate. As an example, a 2-tree with its 
interchange graph is shown in Figure 3.9. An interchange graph is a dual graph for 
which the node corresponding to the unbounded region and its incident members 
are deleted. Obviously for a 2-tree such a graph is a tree. 

 
Fig. 3.9   A 2-tree and its interchange graph. 

3.5.3   A  γ-TREE AND ITS RIGIDITY  

A natural extension of the idea of expansion is the use of subgraphs other than 
stars of degree 2. Let us consider each Si as a generically independent subgraph of 
S. In the force method of structural analysis, a maximal generically independent 
and rigid subgraph T of S is needed, which will be described in more detail in 
Chapter 6. Therefore additional restrictions are considered: 

                                         γ(S1) = 0  

 γ(Si) = γ (Ai)     for   i=2,...,q. (3-9) 

These conditions ensure γ(T) = 0; however, a γ-tree which is also rigid, is 
required. Thus at each step of expansion, a rigidity control is required. There are 
different approaches for such a control. As an example, Theorem 4 may be 
employed for this purpose, or a matching algorithm can be used. 

Let us illustrate the process of employing Theorem 4 by a simple example. Take 
S1 as a rigid graph as shown in Figure 3.10(a), and S2 as a generically independent 
subgraph as Figure 3.10(b). 

 
                (a) S1             (b) S2              (c) S1 ∪ S2                 (d) S1 ∪ S2 

Fig. 3.10   Two different expansion processes. 
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S2 is added to S1 in two different manners as illustrated in Figures 3.10(c and d). 
Using the intersection theorem for both cases we have,  

γ( S1 ∪ S2) = 0 + (−1) − (−1) = 0, 

while (d) is rigid, (c) is not rigid. In order to show this property, (c) and (d) are 
decomposed in Figure 3.11. 

 
(a) Decomposition of (c)   (b) Decomposition of (d)   (c) Another decomposition of (d). 

Fig. 3.11   Rigidity control by Theorem 4. 

Now for decomposition of Figure 3.11(a) we have, 

(2×4 − 3) + (2×2 − 3) ≥ 2×5 − 3, 

which is false and therefore (c) is not rigid. For (d) we have: 

(2×5 − 3) + (2×2 − 1) ≥ 2×5 − 3, 

which is true. Any other decomposition leads to a true inequality and hence (d) is 
rigid. For example, for the decomposition of Figure 3.11(c) one obtains, 

(2×4 − 3) + (2×2 − 3) + (2×2 − 3) ≤ (2×5 − 3), 

which is also true. 

Example: Consider S1 and S2 as shown in Figures 3.12(a) and 3.12(b), 
respectively. For the decompositions shown in (d) we have, 

 (2×4 − 3) + (2×2 − 3) + (2×2 − 3) + (2×2 − 3) ≥ (2×6 − 3), 

which is false, and the subgraph S1 ∪ S2 is not rigid, though γ( S1 ∪ S2) = 0. 

 
             (a) S1         (b) S2                     (c) S1∪ S2         (d) Decomposition of (c) 

Fig. 3.12   Rigidity control by Theorem 4. 
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The above two examples suggest the use of a simple method for possible detection 
of the violation of the rigidity condition, which consists of decomposing Sk+1 into 
its members and using Theorem 4. If a member has both ends in Sk, it should be 
added to Sk, since this does not increase 2N(Sk) − 3, while decreasing the L.H.S. 
of Eq. (3-8) to become smaller than its R.H.S.  

Although such a simple rule makes the quick detection of rigidity feasible, for a 
truss with a complex pattern one should employ a general method similar to those 
presented in Sections 3.3 and 3.4. 

3.5.4   GRID-FORM TRUSSES WITH BRACINGS  

Consider a planar truss consisting of square panels with or without diagonal 
members, an example of which is shown in Figure 3.13(a). The bipartite graph 
B(S) of S is a graph which is constructed as follows: 

Associate one node with each row of squares and denote them by r1, r2, ... , rm. 
With each column of squares, associate one node and denote them by c1, c2, ... , cn 
as depicted in Figure 3.13(b). Connect ri to cj if the corresponding squares in S 
have a diagonal member. The graph obtained in this manner is called the bipartite 
graph B(S) of S. 
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                                    (a)                                                         (b) 

Fig. 3.13   A planar truss and its bipartite graph B(S). 

It is easy to prove that S is rigid, if and only if the corresponding bipartite graph 
B(S) is a connected graph. For this purpose, consider a square grid-form truss with 
two rows and two columns as depicted in Figure 14(a). A series of deformations 
can now be performed as shown in Figure 3.14(b). 
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Fig. 3.14   A square grid-form truss and its deformation components. 

Obviously, an arbitrary deformation of the truss can be considered as a 
combination of these deformation components. Now if a diagonal member is 
added to one of the squares, say the square corresponding to r1 and c1, then the 
deformation still takes place; however, a constraint in the form of x1=y1 is 
imposed. If a sufficient number of diagonal members are added, then x1=x2=y1=y2, 
and no square will deform relative to the squares, i.e. the entire truss will be rigid 
(if it is properly supported). This argument holds for any square grid form truss 
with m rows and n columns. Since the nodes of B(S) correspond to x1, x2, …xm, 
y1, y2, …,ym and the adjacency of r1 and cj in B(S) corresponds to the equality of 
xi=xj, therefore the result follows. 

If B(S) is a spanning tree, then the corresponding S is generically independent and 
stiff. It can also be proven that the statical indeterminacy of S is the same as the 
first Betti number of B(S), Kaveh [92].  Figure 3.15(a) shows a rigid γ-tree for a 
planar truss, the corresponding bipartite graph of which is illustrated in Figure 
3.15(b). 
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     (a) S.                                (b) B(S). 

Fig. 3.15   A γ-tree and its tree bipartite graph. 
 

3.6  Henneberg Sequence for Examining the Rigidity of Trusses 

The following algorithm uses the Henneberg sequence to examine the rigidity of a 
given determinate planar truss. First it deletes all the nodes of degree 2 from the 
graph model of the truss, sequentially. Then a node i of degree 3, which is 
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connected to nodes a, b and c, next, the incident members are omitted and a new 
member is added to the model between one of the pairs (a,b), (b,c) or (a,c), if that 
pair is not already connected in the previous model. Such a pair always exits; 
otherwise the truss would not have been a determinate structure. The above two 
operations are collectively called the Henneberg sequence. The following 
algorithm uses the Henneberg sequence until a single member is obtained, 
indicating the rigidity of the truss. The following theorem provides the proof for 
the existence of a node of degree 3 in a statically determinate planar truss: 

Theorem [89]:  For a statically determinate planar truss, there is at least one node 
of degree 2 or 3 for which Henneberg sequence can be applied. 

Proof:  Let the average degree of the nodes of S be defined as, 

)S(N
)S(M2

)S(N
V

V
)S(N

1i

i
ave == ∑

+
, 

where Vi is the degree of the node i. For a statically determinate planar truss, the 
degree of static indeterminacy γ(S) = M(S) − 2N(S) +3 is equal to zero, i.e. M(S) = 
2N(S) − 3, and: 

4
N(S)

64
N(S)

64N(S)Vave <−=
−

= . 

Thus there should be a node j with Vj = 2 or 3 for which the Henneberg sequence 
can be applied. 

Algorithm: 

Step 1: Number the nodes and members of the graph model of the truss, 
separately. 

Step 2: While there is a node of degree 2, delete such nodes and their incident 
members, one by one. 

Step 3: If a node of degree 1 exists in S, go to Step 5. 

Step 4: Delete a node of degree 3 with its incident members and connect two end 
nodes of the omitted members to make a non-repeated new member in S, and 
repeat steps 2-4. If such a node is not found, go to Step 6.  
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Step 5: If the remaining graph consists of a single member only, then the S is a 
rigid statically determinate truss. Otherwise it is not a determinate rigid truss. 

Step 6: End. 

Example:  A statically determinate truss, shown in Figure 3.16 is examined for 
rigidity, using the above algorithm. Table 3.1 summarizes the operations 
performed in different steps of the Henneberg sequence algorithm. Member 9 
remains at the end, indicating the rigidity of the truss. 
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Fig. 3.16   A statically determinate planar truss. 

It should be mentioned that the Henneberg sequence can also be applied in the 
form of an expansion, i.e. a node with two incident members can be added to S, 
and a node i with 3 incident members (i,a), (i,b) and (i,c) can also be replaced by a 
member (a,b), (a,c) or (b,c) of S. 

The Henneberg sequence in the form of a mixed expansion and contraction 
(collapse), provides a suitable means to perform Müller-Breslau's bar exchange 
method, which is occasionally mistakenly associated with Henneberg in the 
literature. Such operations can also be used in the force method of structural 
analysis [89]. 

Table 3.1  Operations in the Henneberg sequence algorithm. 

Step Deleted node Deleted members New member 

2 1 1,11  
2 2 2,12  
2 8 7,8  
2 7 6,19  
4 3 3,13,14 20(nodes 4,11) 
4 4 4,16,20 21(nodes 5,9) 
2 11 10,15  
2 5 5,21  
2 6 17,18  
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3.7   CONNECTIVITY AND RIGIDITY 

The member-connectivity λ(S) of a connected graph S, is the smallest number of 
members the removal of which disconnects S. When λ(S) ≥ k, then the graph S is 
called k-member-connected. A similar definition can be obtained for node-
connectivity κ(S) by replacing "members" with "nodes". 

Attempts have been made to relate the connectivity of a graph to its rigidity. Some 
partial results have been obtained; however, no general approach is found for such 
an inter-relation. Some of the results obtained by Ref. [165] are outlined in the 
following: 

Theorem 5:  Every 6-connected graph is stiff. 

As an example, the graph shown in Figure 3.17 is stiff; however, deleting four 
members makes it non-stiff. 

It can be proven that a 5-connected graph is not necessarily stiff. As an example, 
for the graph of Figure 3.18, the rigidity can be checked as follows: 

 

Fig. 3.17   A stiff 6-connected graph.  

Decompose S into 8 complete subgraphs K5 and leave the rest of the members as 
single subgraphs. The application of Eq. (3-8) results in, 

8(2×5 − 3) + 20(2×2 − 3) ≥ 2×40 − 3, i.e. 76 ≥ 77, 

which is false and therefore S in not rigid. 
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Fig. 3.18   A non-stiff 5-connected graph. 

Finally it should be noted that many attempts have recently been made to extend 
these ideas to space trusses; however, thus far, no concrete result applicable to 
general space graphs has been obtained. Many open problems remain for further 
research, if pure graph-theoretical methods are to be developed for the recognition 
of the rigidity of space trusses. The theory of matroids, which is briefly introduced 
in Chapter 9 of this book, seems to be a promising tool for the study of rigidity. 

 


